powered by CADENAS

Social Share

Pseudo palladium (9290 views - Material Database)

Pseudo palladium (RhAg) is a binary alloy consisting of equal parts of rhodium (atomic number 45) and silver (atomic number 47) created using nanotechnology to create a far more homogenous mixture than might be possible using more conventional methods. This alloy exhibits properties of the intervening element palladium (atomic number 46).
Go to Article

Pseudo palladium

Pseudo palladium

Pseudo palladium

Pseudo palladium (RhAg) is a binary alloy consisting of equal parts of rhodium (atomic number 45) and silver (atomic number 47) created using nanotechnology to create a far more homogenous mixture than might be possible using more conventional methods. This alloy exhibits properties of the intervening element palladium (atomic number 46).

History

The production of this alloy was first reported by Kyoto University Professor Hiroshi Kitagawa and his research team, October 27, 2010.[1] To make the new alloy, the Kyoto team used nanotechnology to "nebulise" the rhodium and silver and gradually mixed them with heated alcohol, with the two metals mixed stably at the atomic level. The same team also produced alternatives to other kinds of rare metals.[2]

Characteristics

The new alloy has similar properties to palladium, which is used as a catalyst to cleanse exhaust gas and absorbs large quantities of hydrogen.

Rhodium, palladium and silver have 45, 46 and 47 electrons, respectively, numbers that determine their chemical characterizations.

"The orbits of the electrons in the rhodium and silver atoms probably got jumbled up and formed the same orbits as those of palladium," Kitagawa said.[3]

Applications

The alloy has similar properties to palladium, which is used in cars' emission-reducing catalytic converters as well as in computers, mobile phones, flatscreen TVs and dentistry instruments.

Hydrogen storage is cited as one potential use, however, according to researchers, the pseudo palladium alloy has only one half of palladium's hydrogen storage capacity.[4]

See also


41xx steelAL-6XNAlGaAlloy 20鋁鎳鈷合金Alumel鋁合金Aluminium bronzeAluminium-lithium alloy汞齊Arsenical bronzeArsenical copperBell metalBeryllium copperBillon (alloy)BirmabrightBismanol黃銅Brightray青铜Bulat steelCalamine brass铸铁CelestriumChinese silverChromelChromium hydride白金 (合金)康銅氢化亚铜Copper–tungstenCorinthian bronzeCrown goldCrucible steelCunife白铜Cymbal alloys大馬士革鋼Devarda's alloy杜拉鋁Dutch metal电工钢琥珀金Elektron (alloy)ElinvarFernicoFerroalloyFerroceriumFerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumField's metalFlorentine bronzeGalfenolGalinstanGilding metal玻璃GlucydurGuanín (bronze)GunmetalHaynes InternationalHepatizonHiduminium高速鋼High-strength low-alloy steelHydronalium英高鎳合金不變鋼Iron–hydrogen alloyItalmaKanthal (alloy)Kovar镁铝合金Magnox (alloy)MangalloyManganin马氏体时效钢Marine grade stainless马氏体不锈钢MegalliumMelchior (alloy)MercuryMischmetalMolybdochalkosMonelΜ合金Muntz metalMushet steelNichromeNickel hydrideNickel silverNickel titaniumNicrosilNisil北歐金Ormolu透磁合金Phosphor bronze生鐵Pinchbeck (alloy)塑料PlexiglasPlutonium–gallium alloyReynolds 531銠金礦Rose's metalSanicro 28ShakudōSilver steel钠钾合金銲料Speculum metalSpiegeleisenSpring steelStaballoy不鏽鋼Stellite钢结构超導磁率合金Surgical stainless steelTerneTombacTool steelTumbagaType metal維塔立合金耐候钢伍德合金烏茲鋼Y alloyZeron 100Terfenol-DScandium hydride釤鈷磁鐵Argentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichiSterling silverTibetan silverTi Beta-C.Titanium alloy氢化钛Gum metalTitanium gold氮化钛巴氏合金Britannia metalPewterQueen's metalWhite metal氢化铀ZamakZirconium hydride甲烷Mezzanine原子

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material