powered by CADENAS

Social Share

Mischmetal (12702 views - Material Database)

Mischmetal (from German: Mischmetall – "mixed metal") is an alloy of rare earth elements. It is also called cerium mischmetal, rare earth mischmetal or misch metal. A typical composition includes approximately 50% cerium and 25% lanthanum, with small amounts of neodymium and praseodymium. Its most common use is in the ferrocerium "flint" ignition device of many lighters and torches, although an alloy of only rare-earth elements would be too soft to give good sparks. For this purpose, it is blended with iron oxide and magnesium oxide to form a harder material known as ferrocerium. In chemical formulae it is commonly abbreviated as Mm, e.g. MmNi5.
Go to Article

Mischmetal

Mischmetal

Mischmetal (from German: Mischmetall – "mixed metal") is an alloy of rare earth elements. It is also called cerium mischmetal, rare earth mischmetal or misch metal. A typical composition includes approximately 50% cerium and 25% lanthanum, with small amounts of neodymium and praseodymium. Its most common use is in the ferrocerium "flint" ignition device of many lighters and torches, although an alloy of only rare-earth elements would be too soft to give good sparks. For this purpose, it is blended with iron oxide and magnesium oxide to form a harder material known as ferrocerium. In chemical formulae it is commonly abbreviated as Mm, e.g. MmNi5.[1]

History

Carl Auer von Welsbach was not only the discoverer of neodymium and praseodymium, and co-discoverer of lutetium, but was also the inventor of the light-mantle (using thorium), and of the rare earth industry. After extracting necessary thorium content from monazite sand, a lot of lanthanides were left over, for which there was no commercial use. He began exploration for applications to which the rare earths might be put. Among his first discoveries/inventions to bear practical fruit was mischmetal.

Preparation

Historically, mischmetal was prepared from monazite, an anhydrous phosphate of the light lanthanides and thorium. The ore was cracked by reaction at high temperature either with concentrated sulfuric acid, or with sodium hydroxide. Thorium was removed by taking advantage of its weaker basicity relative to the trivalent lanthanides, its daughter radium was precipitated out using entrainment in barium sulfate, and the remaining lanthanides were converted to their chlorides. The resulting "rare earth chloride" (hexahydrate), sometimes known as "lanthanide chloride", was the major commodity chemical of the rare earth industry. By careful heating, preferably with ammonium chloride or in an atmosphere of hydrogen chloride, the hexahydrate could be dehydrated to provide the anhydrous chloride. Electrolysis of the molten anhydrous chloride (admixed with other anhydrous halide to improve the melt behavior) led to the formation of molten mischmetal, which would then be cast into ingots. Any samarium content of the ore tended not to be reduced to the metal, but accumulated in the molten halide, from which it could later be profitably isolated. Monazite-derived mischmetal typically was about 48% cerium, 25% lanthanum, 17% neodymium, and 5% praseodymium, with the balance being the other lanthanides. When bastnäsite started being processed for rare earth content in about 1965, it too was converted to a version of rare earth chloride, and on to mischmetal. This version was higher in lanthanum and lower in neodymium.

As of 2007, the high demand for neodymium has made it profitable to remove all of the heavier lanthanides and neodymium (and sometimes all of the praseodymium as well) from the natural-abundance lanthanide mixture for separate sale, and to include only La-Ce-Pr or La-Ce in the most economical forms of mischmetal. The light lanthanides are so similar in their metallurgical properties, that any application for which the original composition would have been suitable, would be equally well served by these truncated mixtures. The traditional "rare earth chloride", as a commodity chemical, was also used to extract the individual rare earths by companies that did not wish to process the ores directly. As of 2007 mischmetal is typically priced at less than US$10 per kilogram, and the underlying rare earth chloride mixtures are typically less than US$5 per kilogram.

Use

Mischmetal is used in the preparation of virtually all rare earth elements. This is because such elements are nearly identical in most chemical processes, meaning that ordinary extraction processes do not distinguish them. Highly specialized processes, such as those developed by Carl Auer von Welsbach, exploit subtle differences in solubility to separate mischmetal into its constituent elements, with each step producing only an incremental change in composition. Such processes later informed Marie Curie in her search for new elements.

  1. ^ Jurczyk, M; Rajewski, W; Majchrzycki, W; Wójcik, G (1999-08-30). "Mechanically alloyed MmNi5-type materials for metal hydride electrodes". Journal of Alloys and Compounds. 290 (1–2): 262–266. doi:10.1016/S0925-8388(99)00202-9. 
  • R.J. Callow, "The Industrial Chemistry of the Lanthanons, Yttrium, Thorium and Uranium", Pergamon Press, 1967
  • Gupta, C. K.; Krishnamurthy, N. (2005). Extractive metallurgy of rare earths. Boca Raton: CRC Press. ISBN 0-415-33340-7. 
  • F.H. Spedding and A.H. Daane, editors, "The Rare Earths", John Wiley & Sons, 1961.

41xx steelAL-6XNAlGaAlloy 20鋁鎳鈷合金Alumel鋁合金Aluminium bronzeAluminium-lithium alloy汞齊Arsenical bronzeArsenical copperBell metalBeryllium copperBillon (alloy)BirmabrightBismanol黃銅Brightray青铜Bulat steelCalamine brass铸铁CelestriumChinese silverChromelChromium hydride白金 (合金)康銅氢化亚铜Copper–tungstenCorinthian bronzeCrown goldCrucible steelCunife白铜Cymbal alloys大馬士革鋼Devarda's alloy杜拉鋁Dutch metal电工钢琥珀金Elektron (alloy)ElinvarFernicoFerroalloyFerroceriumFerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumField's metalFlorentine bronzeGalfenolGalinstanGilding metal玻璃GlucydurGuanín (bronze)GunmetalHaynes InternationalHepatizonHiduminium高速鋼High-strength low-alloy steelHydronalium英高鎳合金不變鋼Iron–hydrogen alloyItalmaKanthal (alloy)Kovar镁铝合金Magnox (alloy)MangalloyManganin马氏体时效钢Marine grade stainless马氏体不锈钢MegalliumMelchior (alloy)MercuryMolybdochalkosMonelΜ合金Muntz metalMushet steelNichromeNickel hydrideNickel silverNickel titaniumNicrosilNisil北歐金Ormolu透磁合金Phosphor bronze生鐵Pinchbeck (alloy)塑料PlexiglasPlutonium–gallium alloyReynolds 531銠金礦Rose's metalSanicro 28ShakudōSilver steel钠钾合金銲料Speculum metalSpiegeleisenSpring steelStaballoy不鏽鋼Stellite钢结构超導磁率合金Surgical stainless steelTerneTombacTool steelTumbagaType metal維塔立合金耐候钢伍德合金烏茲鋼Y alloyZeron 100Terfenol-DPseudo palladiumScandium hydride釤鈷磁鐵Argentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichiSterling silverTibetan silverTi Beta-C.Titanium alloy氢化钛Gum metalTitanium gold氮化钛巴氏合金Britannia metalPewterQueen's metalWhite metal氢化铀ZamakZirconium hydride甲烷Mezzanine原子珩磨金屬加工材料科学

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material