powered by CADENAS

Social Share

Galinstan (20014 views - Material Database)

Galinstan is a commercial liquid metal alloy whose composition is taken from a family of eutectic alloys mainly consisting of gallium, indium, and tin. Such eutectic alloys are liquids at room temperature, typically melting at −19 °C (−2 °F). Due to the low toxicity and low reactivity of its component metals, Galinstan finds use as a replacement for many applications that previously employed the toxic liquid mercury or the reactive NaK (sodium–potassium alloy). An example of a typical eutectic composition is 68 wt% Ga, 22 wt% In and 10 wt% Sn, though it varies between 62 wt% and 95 wt% Ga, 5 wt% and 22 wt% In, 0 wt% and 16 wt% Sn, while keeping eutectic ability. The marketing name is a portmanteau of gallium, indium, and stannum (Latin for "tin"). Galinstan is a registered trademark of the German company Geratherm Medical AG. The exact composition of Galinstan is not publicly known.
Go to Article

Galinstan

Galinstan

Galinstan is a commercial liquid metal alloy whose composition is taken from a family of eutectic alloys mainly consisting of gallium, indium, and tin. Such eutectic alloys are liquids at room temperature, typically melting at −19 °C (−2 °F).[1] Due to the low toxicity and low reactivity of its component metals, Galinstan finds use as a replacement for many applications that previously employed the toxic liquid mercury or the reactive NaK (sodiumpotassium alloy). An example of a typical eutectic composition is 68 wt% Ga, 22 wt% In and 10 wt% Sn, though it varies between 62 wt% and 95 wt% Ga, 5 wt% and 22 wt% In, 0 wt% and 16 wt% Sn, while keeping eutectic ability. The marketing name is a portmanteau of gallium, indium, and stannum (Latin for "tin"). Galinstan is a registered trademark of the German company Geratherm Medical AG. The exact composition of Galinstan is not publicly known.

Physical properties

Galinstan tends to wet and adhere to many materials, including glass, which limits its use compared to mercury. Galinstan is commercially used as a mercury replacement in thermometers due to its nontoxic properties, but the inner tube must be coated with gallium oxide to prevent the alloy from wetting the glass surface.

Galinstan may be used as a thermal interface for computer hardware cooling solutions, though its cost and aggressivity (it corrodes many other metals such as aluminium by dissolving them) are major obstacles for widespread use. It is also electrically conductive, and thus needs to be applied more carefully than regular insulating compounds.

Galinstan has higher reflectivity and lower density than mercury; it is investigated as a replacement for mercury in liquid mirror telescopes for astronomy. It is difficult to use for cooling fission-based nuclear reactors, because indium has a high absorption cross section for thermal neutrons, efficiently absorbing them and inhibiting the fission reaction. Conversely, it is being investigated as a possible coolant for fusion reactors. Unlike other liquid metals used in this application, such as lithium and mercury, the nonreactivity makes Galinstan a safer material to use.[5]

Melting-point controversy

The melting point of Galinstan has been a source of much debate.[by whom?] Many commercially available gallium, indium and tin eutectic alloys are advertised with a melting point of about +11 °C, which is significantly higher than the −19 °C featured by Galinstan. The official MSDS (material safety data sheet) mentions only that Galinstan is an "eutectic mixture of the metal components gallium, indium and tin" with no further explanation provided. Additionally, a US patent to Geraberger Thermometerwerk GmbH[6] describes various related eutectic alloys and mentions that they may contain up to 2 wt% of antimony (Sb) to increase oxidation resistance and up to 2 wt% of bismuth (Bi) to improve fluidity. The resulting eutectic alloy is said to contain 68 wt% to 69 wt% Ga, 21 wt% to 22 wt% In, and 9.5 wt% to 10.5 wt% Sn, with small addition of Sb and Bi and an impurity level less than 0.001 wt%. The resulting material is noted to have a melting point of −19.5 °C and vaporisation point of above 1800 °C.

See also


AlGa鋁鎳鈷合金鋁合金Aluminium bronzeAluminium-lithium alloyArsenical bronzeArsenical copperBell metalBeryllium copperBillon (alloy)BirmabrightBismanol黃銅青铜Calamine brassChinese silverChromium hydride康銅氢化亚铜Copper–tungstenCorinthian bronzeCunife白铜Cymbal alloysDevarda's alloy杜拉鋁Dutch metal琥珀金Florentine bronzeGalfenolGilding metal玻璃GlucydurGuanín (bronze)GunmetalHepatizonHiduminiumHydronaliumItalma镁铝合金ManganinMegalliumMelchior (alloy)MercuryMolybdochalkosMuntz metalNichromeNickel silver北歐金OrmoluPhosphor bronzePinchbeck (alloy)塑料PlexiglasRose's metalShakudōSpeculum metal不鏽鋼Stellite钢结构TombacTumbaga維塔立合金伍德合金Y alloy白金 (合金)銠金礦Crown goldElinvarField's metalFernicoFerroalloyFerroceriumFerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouranium不變鋼铸铁Iron–hydrogen alloy生鐵Kanthal (alloy)KovarStaballoySpiegeleisenBulat steelCrucible steel41xx steel大馬士革鋼Mangalloy高速鋼Mushet steel马氏体时效钢High-strength low-alloy steelReynolds 531电工钢Spring steelAL-6XNCelestriumAlloy 20Marine grade stainless马氏体不锈钢Sanicro 28Surgical stainless steelZeron 100Silver steelTool steel耐候钢烏茲鋼銲料TerneType metalElektron (alloy)汞齊Magnox (alloy)AlumelBrightrayChromelHaynes International英高鎳合金MonelNicrosilNisilNickel titaniumΜ合金透磁合金超導磁率合金Nickel hydridePlutonium–gallium alloy钠钾合金MischmetalTerfenol-DPseudo palladiumScandium hydride釤鈷磁鐵Argentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichiSterling silverTibetan silverTi Beta-C.Titanium alloy氢化钛Gum metalTitanium gold氮化钛巴氏合金Britannia metalPewterQueen's metalWhite metal氢化铀ZamakZirconium hydride甲烷Mezzanine原子

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material