powered by CADENAS

Social Share

(24580 views - Material Database)

铋(Bismuth)是一种化学元素,它的化学符号是Bi,它的原子序数是83,是有银白色光泽的金属。 铋的化学性质与砷及锑类似。铋是最反磁性(又稱抗磁性)的金属,亦是除汞以外有最低热导率的金属。铋还拥有最高的霍尔系数 ,它具有较高的电阻 。当铋已極薄的层,在物体表面沉积是有半导体的性质,尽管铋是一个后过渡金属。可用于制备易熔合金及与锡融合防止锡疫。 鉍是一種脆性金屬,在自然界中,常以單質形式出現。鉍晶體的表面有時會呈現出不同顏色的色調,這是由於鉍晶體在空氣中氧化時形成的氧化層厚度不一,導致不同波長的光受到不同程度的反射,因此呈現出彩虹的顏色。 以前鉍被認爲是最重的穩定元素,然而在2003年時发现,铋唯一的天然同位素铋209可經α衰變變爲鉈-205。其半衰期為1.9*1019年左右,達到宇宙年龄的10億倍。所以,鉛被认为是質量最大的穩定元素。 與其他重金屬不同的是,铋的毒性與鉛或銻相比是相對的較低。铋不容易被身體吸收、不致癌、不損害DNA構造、可透過排尿帶出體外。基於這些原因,鉍經常被用於取代鉛的應用上(目前约铋产量的三分之一)。例如用於無鉛子彈,無鉛銲錫、藥物和化妝品上,特别是水杨酸铋,用来治疗腹泻。而铋的化合物的产量约占铋总产量的一半。
Go to Article

铋   83Bi




外觀
银白色光泽
概況
名稱·符號·序數 铋(bismuth)·Bi·83
元素類別 贫金属
·週期· 15·6·p
標準原子質量 208.98040(1)
電子排布

[Xe] 4f14 5d10 6s2 6p3
2, 8, 18, 32, 18, 5

歷史
發現 克劳德·弗朗索瓦·若弗鲁瓦(1753年)
物理性質
物態 固体
密度 (接近室温
9.78 g·cm−3
熔點時液體密度 10.05 g·cm−3
熔點 544.7 K,271.5 °C,520.7 °F
沸點 1837 K,1564 °C,2847 °F
熔化熱 11.30 kJ·mol−1
汽化熱 179 kJ·mol−1
比熱容 25.52 J·mol−1·K−1

蒸汽壓

壓/Pa 1 10 100 1 k 10 k 100 k
溫/K 941 1041 1165 1325 1538 1835
原子性質
氧化態 5, 4, 3, 2, 1, −1, −2, −3
((a mildly acidic oxide))
電負性 2.02(鲍林标度)
電離能

第一:703 kJ·mol−1
第二:1610 kJ·mol−1
第三:2466 kJ·mol−1

更多
原子半徑 156 pm
共價半徑 148±4 pm
范德華半徑 207 pm
雜項
晶體結構 三方[1]
磁序 抗磁性
電阻率 (20 °C)1.29 µΩ·m
熱導率 7.97 W·m−1·K−1
膨脹係數 (25 °C)13.4 µm·m−1·K−1
聲速(細棒) (20 °C)1790 m·s−1
楊氏模量 32 GPa
剪切模量 12 GPa
體積模量 31 GPa
泊松比 0.33
莫氏硬度 2.25
布氏硬度 70–95 MPa
CAS號 7440-69-9
最穩定同位素

主条目:铋的同位素

同位素 豐度 半衰期 方式 能量MeV 產物
207Bi syn 31.55 y β+ 2.399 207Pb
208Bi syn 3.68×105 y β+ 2.880 208Pb
209Bi 100% 1.9×1019 y α 3.137 205Tl
210Bi trace 5.012 d β 1.426 210Po
α 5.982 206Tl
210mBi syn 3.04×106 y IT 0.271 210Bi
α 6.253 206Tl

Bismuth)是一种化学元素,它的化学符号Bi,它的原子序数是83,是有银白色光泽的金属

铋的化学性质与类似。铋是最反磁性(又稱抗磁性)的金属,亦是除以外有最低热导率的金属。铋还拥有最高的霍尔系数 ,它具有较高的电阻 。当铋已極薄的层,在物体表面沉积是有半导体的性质,尽管铋是一个后过渡金属。可用于制备易熔合金及与融合防止锡疫

鉍是一種脆性金屬,在自然界中,常以單質形式出現。鉍晶體的表面有時會呈現出不同顏色的色調,這是由於鉍晶體在空氣中氧化時形成的氧化層厚度不一,導致不同波長的光受到不同程度的反射,因此呈現出彩虹的顏色。

以前鉍被認爲是最重的穩定元素,然而在2003年時发现,铋唯一的天然同位素铋209可經α衰變變爲-205。[2]半衰期為1.9*1019年左右,達到宇宙年龄的10億倍。所以,被认为是質量最大的穩定元素。

與其他重金屬不同的是,铋的毒性與鉛或銻相比是相對的較低。铋不容易被身體吸收、不致癌、不損害DNA構造、可透過排尿帶出體外。基於這些原因,鉍經常被用於取代鉛的應用上(目前约铋产量的三分之一)。例如用於無鉛子彈,無鉛銲錫、藥物和化妝品上,特别是水杨酸铋,用来治疗腹泻。而铋的化合物的产量约占铋总产量的一半。

金属冶炼

化学元素铋的合成晶体,表面是非常薄并闪光的氧化层。

工业上将冶炼铋主要是通过氧化铋氧化还原反应,冶炼炉中的反应方程式主要为:

Bi2O3+3C→2Bi+3CO↑
Bi2O3+3CO→2Bi+3CO2

其中,产生的一氧化碳还可能把杂质金属的氧化物还原:

PbO+CO→Pb+CO2

这些杂质溶于金属铋中组成还原熔炼产物粗铋。如果铋矿中还含有铜,则通常加入黄铁矿来回收铜:

2Cu+FeS2→Cu2S+FeS

硫化铋矿可以加入屑来冶炼铋,主要的反应方程式是:

Bi2S3+3Fe→2Bi+3FeS

同样,有部分杂质熔入金属铋得到粗铋。

氧化铋和硫化铋的混合矿则可以通过混合熔炼法来冶炼金属铋,冶炼过程是根据氧化铋和硫化铋彼此之间的氧化还原反应:

Bi2S3+2Bi2O3→6Bi+3SO2↑。

湿法冶炼铋常用氯化铁-盐酸法和铁粉置换法。氯化铁-盐酸法是将硫化铋矿溶解在三氯化铁和盐酸(HCl)的混合溶液中:

Bi2S3+6FeCl3→2BiCl3+6FeCl2+3S

其中,FeCl3还能溶解铋矿中的天然铋:

3FeCl3+Bi→BiCl3+3FeCl2

矿中如果有氧化铋则直接被盐酸溶解:

Bi2O3+6HCl→2BiCl3+3H2O。

盐酸的另外一个作用是防止生成的BiCl3水解成不溶性的BiOCl沉淀。铁粉置换法则是把生成的氯化铋中的铋置换出来:

3Fe+2BiCl3→2Bi+3FeCl2

这时沉淀出来的铋为海绵状的。海绵铋如果直接在空气中加热会导致氧化,因此工业上熔融铋是在熔融的氢氧化钠中进行的,这样既可以防止铋的氧化,又可以让生成的液态铋下沉易于聚集,铋中的氧化物及杂质能被氢氧化钠溶解。[3]

化学性质

铋的化学性质相似,常温下不与作用,因此,铋在空气中稳定。在加热至熔点时,铋表面逐渐生成灰黑色的氧化物。金属铋可以在一定条件下和卤素直接反应生成三卤化铋。高温下,金属铋能和很多非金属及金属生成三价铋的化合物,铋的还原电势为正值,即在电动序中位于后,所以铋不和非氧化性酸反应。铋能溶于热的浓硫酸中,也能顺利地和硝酸反应。与砷、锑不同,铋有生成含氧酸盐的明显趋势,如硫酸铋硝酸铋砷酸铋等。铋不和碱反应。

需要指出的是,铋与氧化剂作用时通常只生成3价铋而不是5价铋。+5氧化态的铋远不如砷(V)以及锑(V)稳定。这不仅仅是因为铋的第IV电离能及第V电离能之和(9.776mJ·mol-1),而且还因为6s2的一个电子激发到6d空轨道需要很大的能量,所以由低氧化态的铋生成Bi(V)的化合物是很艰难的。[4]

此外,铋还能形成原子簇化合物。

铋唯一的天然同位素铋是铋209,在传统上也被视为最重的稳定同位素,但它长期以来一直怀疑是不稳定的。在2003年最终表明,当研究人员在法国的the Institut d'Astrophysique Spatiale in Orsay,测得铋209的半衰期为1.9×1019 年s ,相当于十亿倍于现在宇宙年龄。由于其特别长的半衰期,为所有目前已知的医疗和工业应用,铋可以被视为稳定的非放射性。而对它的放射性是纯粹是学术兴趣,因为铋是少数几个元素,它的放射性首先在理论上被怀疑而不会在实验室中被发现。铋具有最长已知α衰变半衰期,虽然碲-128具有双重β衰变以上的半衰期 2.2×1024 年s .

具有短半衰期的几种同位素也已被发现,可以衰变为锕,镭和钍。铋213还被发现衰变成铀233。

在商业上,放射性同位素铋-213可以通过一个子直线粒子加速器轰击产生镭用制造辐射。在1997年,抗体结合物与铋213,其具有45分钟的半衰期和衰变与α粒子的排放,被用来治疗患者的白血病。这种同位素也已尝试了在癌症治疗中,例如,在靶向α治疗(TAT)程序。

参考资料

  1. ^ Cucka, P.; Barrett, C. S. The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi. Acta Crystallographica. 1962, 15 (9): 865. doi:10.1107/S0365110X62002297. 
  2. ^ Dumé, Belle. Bismuth breaks half-life record for alpha decay. Physicsweb. 2003-04-23. 
  3. ^ 无机化学丛书.第四卷.P472.铋的生产与应用
  4. ^ 无机化学丛书.第四卷.P484.铋的化学性质



Arsenical copper玻璃塑料Plexiglas不鏽鋼钢结构MercuryAluminium-lithium alloy鋁鎳鈷合金Birmabright杜拉鋁HiduminiumHydronaliumItalma镁铝合金鋁合金Y alloy伍德合金Rose's metalChromium hydrideNichromeMegalliumStellite維塔立合金Beryllium copperBillon (alloy)黃銅Calamine brassChinese silverDutch metalGilding metalMuntz metalPinchbeck (alloy)Tombac青铜Aluminium bronzeArsenical bronzeBell metalFlorentine bronzeGlucydurGuanín (bronze)GunmetalPhosphor bronzeOrmoluSpeculum metal康銅氢化亚铜Copper–tungstenCorinthian bronzeCunife白铜Cymbal alloysDevarda's alloy琥珀金HepatizonManganinMelchior (alloy)Nickel silverMolybdochalkos北歐金ShakudōTumbagaAlGaGalfenolGalinstan白金 (合金)銠金礦Crown goldElinvarField's metalFernicoFerroalloyFerroceriumFerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouranium不變鋼铸铁Iron–hydrogen alloy生鐵Kanthal (alloy)KovarStaballoySpiegeleisenBulat steelCrucible steel41xx steel大馬士革鋼Mangalloy高速鋼Mushet steel马氏体时效钢High-strength low-alloy steelReynolds 531电工钢Spring steelAL-6XNCelestriumAlloy 20Marine grade stainless马氏体不锈钢Sanicro 28Surgical stainless steelZeron 100Silver steelTool steel耐候钢烏茲鋼銲料TerneType metalElektron (alloy)汞齊Magnox (alloy)AlumelBrightrayChromelHaynes International英高鎳合金MonelNicrosilNisilNickel titaniumΜ合金透磁合金超導磁率合金Nickel hydridePlutonium–gallium alloy钠钾合金MischmetalTerfenol-DPseudo palladiumScandium hydride釤鈷磁鐵Argentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichiSterling silverTibetan silverTi Beta-C.Titanium alloy氢化钛Gum metalTitanium gold氮化钛巴氏合金Britannia metalPewterQueen's metalWhite metal氢化铀ZamakZirconium hydride甲烷Mezzanine原子

This article uses material from the Wikipedia article "铋", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material