Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Zero, Public Domain Dedication (RuppertsAlgorithm).
In geometry, a centroidal Voronoi tessellation (CVT) is a special type of Voronoi tessellation or Voronoi diagram. A Voronoi tessellation is called centroidal when the generating point of each Voronoi cell is also its mean (center of mass). It can be viewed as an optimal partition corresponding to an optimal distribution of generators. A number of algorithms can be used to generate centroidal Voronoi tessellations, including Lloyd's algorithm for K-means clustering.
Gersho's conjecture, proven for one and two dimensions, says that "asymptotically speaking, all cells of the optimal CVT, while forming a tessellation, are congruent to a basic cell which depends on the dimension."[1] In two dimensions, the basic cell for the optimal CVT is a regular hexagon.
Centroidal Voronoi tessellations are useful in data compression, optimal quadrature, optimal quantization, clustering, and optimal mesh generation.[2] Many patterns seen in nature are closely approximated by a Centroidal Voronoi tessellation. Examples of this include the Giant's Causeway, the cells of the cornea,[3] and the breeding pits of the male tilapia.[2]
A weighted centroidal Voronoi diagrams is a CVT in which each centroid is weighted according to a certain function. For example, a grayscale image can be used as a density function to weight the points of a CVT, as a way to create digital stippling.[4]
This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
3D - 3D Model - 3D CAD - 3D Library - Steampunk Bauhaus Jugendstil Klassizismus Art Nouveau Modern Art AvantGarde Cubism Kubismus