powered by CADENAS

Social Share

Galfenol (8769 views - Material Database)

In materials science, galfenol is the general term for an alloy of iron and gallium. The name was first given to iron-gallium alloys by United States Navy researchers in 1998 when they discovered that adding gallium to iron could amplify iron's magnetostrictive effect up to tenfold. Galfenol is of interest to sonar researchers because magnetostrictor materials are used to detect sound, and amplifying the magnetostrictive effect could lead to better sensitivity of sonar detectors. Galfenol is also proposed for vibrational energy harvesting, actuators for precision machine tools, active anti-vibration systems, and anti-clogging devices for sifting screens and spray nozzles. Galfenol is machinable and can be produced in sheet and wire form. In 2009, scientists from Virginia Polytechnic Institute and State University, and National Institute of Standards and Technology (NIST) used neutron beams to determine the structure of galfenol. They determined that the addition of gallium changes the lattice structure of the iron atoms from regular cubic cells to one in which the faces of some of the cells become slightly rectangular. The elongated cells tend to clump together in the alloy, forming localized clumps within the material. These clumps have been described by Peter Gehring of the NIST Center for Neutron Research as "something like raisins within a cake".
Go to Article

Galfenol

Galfenol

In materials science, galfenol is the general term for an alloy of iron and gallium. The name was first given to iron-gallium alloys by United States Navy researchers in 1998 when they discovered that adding gallium to iron could amplify iron's magnetostrictive effect up to tenfold. Galfenol is of interest to sonar researchers because magnetostrictor materials are used to detect sound, and amplifying the magnetostrictive effect could lead to better sensitivity of sonar detectors.[1] Galfenol is also proposed for vibrational energy harvesting, actuators for precision machine tools, active anti-vibration systems, and anti-clogging devices for sifting screens and spray nozzles. Galfenol is machinable and can be produced in sheet and wire form.[2][3]

In 2009, scientists from Virginia Polytechnic Institute and State University, and National Institute of Standards and Technology (NIST) used neutron beams to determine the structure of galfenol. They determined that the addition of gallium changes the lattice structure of the iron atoms from regular cubic cells to one in which the faces of some of the cells become slightly rectangular. The elongated cells tend to clump together in the alloy, forming localized clumps within the material. These clumps have been described by Peter Gehring of the NIST Center for Neutron Research as "something like raisins within a cake".[1]

See also


AlGaAlnicoAlüminyumAlüminyum alaşımlarıAluminium bronzeAluminium-lithium alloyArsenical bronzeArsenical copperBell metalBerilyumBeryllium copperBillon (alloy)BirmabrightBismanolBizmutPirinç (alaşım)BronzCalamine brassChinese silverKromChromium hydrideKobaltConstantanBakırCopper hydrideCopper–tungstenCorinthian bronzeCunifeCupronickelCymbal alloysDevarda's alloyDuraluminDutch metalElektrumFlorentine bronzeGalyumGilding metalCamGlucydurAltınGuanín (bronze)GunmetalHepatizonHiduminiumHydronaliumİndiyumDemirItalmaKurşunMagnaliumMagnezyumManganinMegalliumMelchior (alloy)MercuryMolybdochalkosMuntz metalNichromeNikelAlman gümüşüKuzey altınıOrmoluPhosphor bronzePinchbeck (alloy)PlastikPlexiglasPlütonyumPotasyumRodyumRose's metalSamaryumSkandiyumShakudōGümüşSodyumSpeculum metalPaslanmaz çelikÇelikStelliteStructural steelKalayTitanyumTombacTumbagaUranyumVitalliumWood's metalY alloyÇinkoZirkonyumGalinstanColored goldRhoditeCrown goldElinvarField's metalFernicoFerroalloyFerroceriumFerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumInvarDökme demirIron–hydrogen alloyPig ironKanthal (alloy)KovarStaballoySpiegeleisenBulat steelCrucible steel41xx steelŞam çeliğiMangalloyHigh-speed steelMushet steelMaraging steelHigh-strength low-alloy steelReynolds 531Electrical steelSpring steelAL-6XNCelestriumAlloy 20Marine grade stainlessMartensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelTool steelWeathering steelWootz steelSolderTerneType metalElektron (metal)AmalgamMagnox (alloy)AlumelBrightrayChromelHaynes InternationalİnkomelMonelNicrosilNisilŞekil Hafızalı AlaşımlarMu-metalPermalloySupermalloyNickel hydridePlutonium–gallium alloySodium-potassium alloyMischmetalLityumTerfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichiSom gümüşTibetan silverTitanium Beta CTitanium alloyTitanium hydrideGum metalTitanium goldTitanyum nitritBabbitt (alloy)Britannia metalPewterQueen's metalWhite metalUranium hydrideZamakZirconium hydrideHidrojenHelyumBorAzotOksijenFlorMetanMezzanineAtom

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification