Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Комплексная наука | |
Электромеханика | |
---|---|
Тема | Электротехника |
Предмет изучения | Преобразование электрической энергии в механическую и наоборот, электрические машины, электромеханические комплексы и системы. |
Период зарождения | конец XIX века |
Основные направления |
Общая теория электромеханического преобразования энергии; Проектирование электрических машин; Анализ переходных процессов в электрических машинах. |
Вспомогат. дисциплины |
Механика, электродинамика, ТОЭ, электрические аппараты. |
Центры исследований |
|
Значительные учёные | Э. Арнольд, Р. Рихтер, Р. Парк, Р. А. Лютер, А. И. Важнов, А. В. Иванов-Смоленский, Л. М. Пиотровский, Д. А. Завалишин, А. И. Вольдек, И. П. Копылов |
Электромеха́ника — раздел электротехники, в котором рассматриваются общие принципы электромеханического преобразования энергии[1][2] и их практическое применение для проектирования и эксплуатации электрических машин[3].
Предметом электромеханики является управление режимами работы и регулирование параметров обратимого преобразования электрической энергии в механическую и механической — в электрическую, включая генерирование и трансформацию электрической энергии[4].
Электромеханика как наука рассматривает вопросы создания и совершенствования силовых и информационных устройств для взаимного преобразования электрической и механической энергии, электрических, контактных и бесконтактных аппаратов для коммутации электрических цепей и управления потоками энергии[5].
В соответствии с общероссийским классификатором специальностей по образованию электромеханика является специальностью высшего профессионального образования, подготовка по которой осуществляется в рамках направления 140600 — «Электротехника, электромеханика и электротехнологии»[6][7].
Одной из первых работ по электромеханике является работа, посвящённая теории и проектированию обмоток электрических машин постоянного тока, которая была опубликована в 1891 году швейцарским учёным Энгельбертом Арнольдом[8].
В первые три десятилетия XX в. в трудах Э. Арнольда, А. Блонделя, М. Видмара, Л. Дрейфуса, М. П. Костенко, К. А. Круга и В. А. Толвинского была разработана теория установившихся режимов электрических машин.
В 1895 г. А. Блондель предложил метод двух реакций для анализа синхронных машин.
В 1929 г. Р. Парк[en], используя метод двух реакций, вывел дифференциальные уравнения синхронной машины, названные его именем.
В 1938—1942 гг. Г. Крон создал обобщенную теорию электрических машин (дифференциальные уравнения идеализированной обобщенной электрической машины) и разработал методы тензорного и матричного анализов электрических цепей и машин.
В 1963 г. И. П. Копылов предложил математическую модель обобщенного электромеханического преобразователя для несинусоидального магнитного поля в воздушном зазоре, применимую для симметричных и несимметричных электрических машин с любым числом фаз обмоток статора и ротора и учитывающую нелинейность изменения их параметров.
Академик А. Г. Иосифьян дал общее определение электромеханики: «Электромеханика — наука о движении и взаимодействии вещественных инерциальных макроскопических и микроскопических тел, связанных с электрическими и магнитными полями»[9]. Учитывая то, что для приведения покоящегося тела в движение требуется действие силы, определение, данное Иосифьяном А. Г., может быть приведено к следующей форме: «Электромеханика — обобщенное учение о силах, действующих в электромагнитном поле и о проблемах, связанных с проявлением этих сил»[10].
В зарубежных источниках встречается следующее определение: «Электромеханика — технология, рассматривающая вопросы, связанные с электромеханическими компонентами, устройствами, оборудованием, системами или процессами»[11], где под электромеханическими компонентами подразумеваются электрические машины.
Как правило, под законами электромеханики подразумевают следующие законы электродинамики, необходимые для анализа процессов и проектирования электромеханических преобразователей[12].
1. Закон электромагнитной индукции Фарадея:
где — ЭДС,
— магнитный поток,
— магнитная индукция в данной точке поля,
— активная длина проводника в пределах равномерного магнитного поля с индукцией
, расположенного в плоскости, перпендикулярной к направлению магнитных силовых линий,
— скорость проводника в плоскости, нормальной к
, в направлении, перпендикулярном к
.
2. Закон полного тока для магнитной цепи (1-е уравнение Максвелла в интегральной форме):
где — вектор напряженности магнитного поля,
— элементарное перемещение вдоль некоторого пути в магнитном поле,
— величина полного тока, который охватывается контуром интегрирования.
3. Закон электромагнитных сил (закон Ампера).
Профессор МЭИ Копылов И. П. сформулировал три общих закона электромеханики[13]:
1.Основное уравнение электрической машины[14] — уравнение, связывающее между собой величины диаметра ротора и длины ротора с мощностью двигателя и числом оборотов в минуту:
где — диаметр ротора,
— длина ротора,
— синхронная скорость вращения ротора в об/мин (равная скорости вращения первой гармоники МДС обмотки статора),
— мощность электрической машины в кВт,
— коэффициент мощности,
— обмоточный коэффициент, учитывающий влияние распределения обмотки в пазах и влияние укорочения шага обмотки,
— амплитуда нормальной составляющей магнитной индукции в зазоре машины,
— «линейная нагрузка», равная числу амперпроводников, приходящихся на 1 погонный сантиметр длины окружности статора.
Правая часть основного уравнения для данного (известного) типа машины изменяются в сравнительно узких пределах и называется «машинной постоянной» или постоянной Арнольда
2.Уравнения равновесия напряжений обмоток электрической машины — уравнения, составленные для цепей обмоток на основании второго закона Кирхгофа
3.Уравнение электромагнитного момента
где — число фаз обмотки статора,
— число пар полюсов,
— действующее значение напряжения статора,
— частота тока статора,
— активное сопротивление ротора, приведённое к статору,
— активное сопротивление фазной обмотки статора,
— индуктивное сопротивление короткого замыкания, приблизительно равное сумме индуктивности рассеяния статора и приведённой к статору индуктивности рассеяния ротора
.
где — ЭДС, индуктируемая в обмотке статора потоком ротора,
— угол нагрузки (угол сдвига фаз между ЭДС и напряжением статора),
— продольное и поперечное синхронные индуктивные сопротивления обмотки статора.
В соответствии с ГОСТом[4], определяющим содержание подготовки выпускников вузов по специальности "Электромеханика, " в электромеханике рассматриваются следующие вопросы:
Учебники по электромеханике содержат такие темы как[12]:
This article uses material from the Wikipedia article "Электромеханика", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
EPLAN, Aucotec, CAE, AutoCAD Electrical, IGE XAO, ElCAD, 2D drawings, 2D symbols, 3D content, 3D catalog, EPLAN Electric P8, Zuken E3, schematics, dataportal, data portal, wscad universe, electronic, ProPanel3D, .EDZ, eClass Advanced, eCl@ss Advanced