powered by CADENAS

Social Share

Amazon

Поршневой двигатель внутреннего сгорания (24399 views - Mechanical Engineering)

Поршнево́й дви́гатель — двигатель внутреннего сгорания, в котором тепловая энергия расширяющихся газов, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень. Поступательное движение поршня преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом. Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (бензорезок (бензо-болгарок), газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий. Мощность поршневых двигателей внутреннего сгорания колеблется в пределах от нескольких ватт (двигатели авиа-, мото- и судомоделей) до 75 000 кВт (судовые двигатели). В качестве топлива в поршневых двигателях внутреннего сгорания используются: жидкости — бензин, дизельное топливо, спирты, биодизель; газы — сжиженный газ, природный газ, водород, газообразные продукты крекинга нефти, биогаз; монооксид углерода, вырабатываемый в газогенераторе, входящем в состав топливной системы двигателя, из твёрдого топлива (угля, торфа, древесины).Полный цикл работы двигателя складывается из последовательности тактов — однонаправленных поступательных ходов поршня. Различают двухтактные и четырёхтактные двигатели. Число цилиндров в разных поршневых двигателях колеблется от 1-го до 24-х. Объём цилиндра — это произведение площади поперечного сечения цилиндра на ход поршня. Суммарный объём всех цилиндров обычно называют рабочим объёмом двигателя. По способу смесеобразования делятся: Двигатели с внешним смесеобразованием. Воздушно-топливная смесь готовится в карбюраторе, поступает по впускным коллекторам (патрубкам) в цилиндры двигателя, как вариант — инжекторная система подачи топлива. Воспламенение топливо-воздушной смеси выполнется, как правило, электроискровым разрядом, вырабатываемым системой зажигания (например, автомобильный Бензиновый двигатель внутреннего сгорания). Двигатели с внешним смесеобразованием могут работать на газообразном топливе (природный газ, сжиженные углеводородные газы, биогаз, генераторный газ, см. газогенераторный автомобиль, газовый двигатель); Компрессионные карбюраторные двигатели. В них топливо подается вместе с воздухом (как в бензиновых двигателях), обычно в основе топлива — диэтиловый эфир, касторовое масло и керосин). Воспламенение происходит от сжатия. Степень сжатия регулируется контрпоршнем, так как от этого зависит момент воспламенения смеси. Компрессионные двигатели используются главным образом в авиа- и автомоделях. Компрессионные карбюраторные двигатели не являются дизельными двигателями. Калильные карбюраторные двигатели. Схожи по принципу действия с компрессионными, но имеют калильную свечу, накал которой поддерживается за счёт теплоты сгорания топлива на предыдущем такте. Такие двигатели также требуют особого состава топлива (обычно в его основе — метанол, касторовое масло и нитрометан). Используются главным образом в авиа- и автомоделях; Двигатели с внутренним смесеобразованием. Эти двигатели, в свою очередь, подразделяются на: Дизельные, работающие на дизельном топливе. В этих двигателях сжатию подвергается только воздух в цилиндрах, вблизи верхней мёртвой точки при такте сжатия в камеру сгорания форсункой впрыскивается дизельное топливо, которое воспламеняется при контакте с воздухом, нагретым от сжатия до температуры в несколько сотен градусов Цельсия. Воспламенение от горячих частей двигателя (калоризаторные), обычно — днища поршня или калильной головки. Приводные двигатели прокатных станов (топливо-мартеновский газ), в первой половине XX века применялись в сельском хозяйстве.Двигатели с внутренним смесеобразованием имеют (как в теории, так и на практике) более высокий КПД и вращающий момент за счёт более высокой степени сжатия. Существуют также газодизельные двигатели, работающие на смеси природного газа с воздухом. Так как температура воспламенения от сжатия газовоздушной смеси составляет около 700 °C (дизельное топливо воспламеняется при 320—380 °C), воспламенение производится впрыскиванием через форсунки небольшого количества дизельного топлива.В рамках технической термодинамики работа поршневых двигателей внутреннего сгорания в зависимости от особенностей их циклограмм описывается термодинамическими циклами Отто, Дизеля, Тринклера, Аткинсона или Миллера. Эффективный КПД поршневого ДВС не превышает 60 %. Остальная тепловая энергия распределяется, в основном, между теплом выхлопных газов и нагревом конструкции двигателя. Поскольку последняя доля весьма существенна, поршневые ДВС нуждаются в системе интенсивного охлаждения. Различают системы охлаждения: воздушные, отдающие избыточное тепло окружающему воздуху через ребристую внешнюю поверхность цилиндров; используются в двигателях сравнительно небольшой мощности (десятки л.с.), или в более мощных авиационных двигателях, работающих в быстром потоке воздуха; жидкостные, в которых охлаждающая жидкость (вода, масло или антифриз) прокачивается через рубашку охлаждения (каналы, созданные в стенках блока цилиндров), и затем поступает в радиатор охлаждения, в котором теплоноситель охлаждается потоком воздуха, созданным вентилятором. Иногда в некоторых деталях (например, выпускные клапана) в качестве теплоносителя используется металлический натрий, расплавляемый теплом двигателя при его прогреве.
Go to Article

Explanation by Hotspot Model

Youtube


    

Поршневой двигатель внутреннего сгорания

Поршневой двигатель внутреннего сгорания

Поршневой двигатель внутреннего сгорания
Четырёхтактный цикл двигателя внутреннего сгорания
Такты:
1. Всасывание горючей смеси
2. Сжатие
3. Рабочий ход
4. Выхлоп

Поршнево́й дви́гатель — двигатель внутреннего сгорания, в котором тепловая энергия расширяющихся газов, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень.

Поступательное движение поршня преобразуется во вращение коленчатого вала кривошипно-шатунным механизмом.

Поршневой двигатель внутреннего сгорания сегодня является самым распространённым тепловым двигателем. Он используется для привода средств наземного, воздушного и водного транспорта, боевой, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров, водяных насосов, помп, моторизованного инструмента (бензорезок (бензо-болгарок), газонокосилок, бензопил) и прочих машин, как мобильных, так и стационарных, и производится в мире ежегодно в количестве нескольких десятков миллионов изделий.

Мощность поршневых двигателей внутреннего сгорания колеблется в пределах от нескольких ватт (двигатели авиа-, мото- и судомоделей) до 75 000 кВт (судовые двигатели).

В качестве топлива в поршневых двигателях внутреннего сгорания используются:

Полный цикл работы двигателя складывается из последовательности тактов — однонаправленных поступательных ходов поршня. Различают двухтактные и четырёхтактные двигатели.

Число цилиндров в разных поршневых двигателях колеблется от 1-го до 24-х. Объём цилиндра — это произведение площади поперечного сечения цилиндра на ход поршня. Суммарный объём всех цилиндров обычно называют рабочим объёмом двигателя. По способу смесеобразования делятся:

Двигатели с внутренним смесеобразованием имеют (как в теории, так и на практике) более высокий КПД и вращающий момент за счёт более высокой степени сжатия.

  • Существуют также газодизельные двигатели, работающие на смеси природного газа с воздухом. Так как температура воспламенения от сжатия газовоздушной смеси составляет около 700 °C (дизельное топливо воспламеняется при 320—380 °C), воспламенение производится впрыскиванием через форсунки небольшого количества дизельного топлива.

В рамках технической термодинамики работа поршневых двигателей внутреннего сгорания в зависимости от особенностей их циклограмм описывается термодинамическими циклами Отто, Дизеля, Тринклера, Аткинсона или Миллера.

Эффективный КПД поршневого ДВС не превышает 60 %. Остальная тепловая энергия распределяется, в основном, между теплом выхлопных газов и нагревом конструкции двигателя. Поскольку последняя доля весьма существенна, поршневые ДВС нуждаются в системе интенсивного охлаждения. Различают системы охлаждения:

  • воздушные, отдающие избыточное тепло окружающему воздуху через ребристую внешнюю поверхность цилиндров; используются в двигателях сравнительно небольшой мощности (десятки л.с.), или в более мощных авиационных двигателях, работающих в быстром потоке воздуха;
  • жидкостные, в которых охлаждающая жидкость (вода, масло или антифриз) прокачивается через рубашку охлаждения (каналы, созданные в стенках блока цилиндров), и затем поступает в радиатор охлаждения, в котором теплоноситель охлаждается потоком воздуха, созданным вентилятором.
    • Иногда в некоторых деталях (например, выпускные клапана) в качестве теплоносителя используется металлический натрий, расплавляемый теплом двигателя при его прогреве.

Основные параметры двигателя

С работой поршневого двигателя внутреннего сгорания связаны следующие параметры.

  • Верхняя мёртвая точка (в. м. т.) — крайнее верхнее положение поршня.
  • Нижняя мёртвая точка (н. м. т.) — крайнее нижнее положение поршня.
  • Радиус кривошипа — расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки
  • Ход поршня — расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).
  • Такт — часть рабочего цикла, происходящего при движении поршня из одного крайнего положения в другое.
  • Объём камеры сгорания — объём пространства над поршнем, когда он находится в верхней мертвой точке.
  • Рабочий объём цилиндра — объём, освобождаемый поршнем при перемещении его от верхней мертвой точки к нижней мертвой точке.
  • Полный объём цилиндра — объём пространства над поршнем при нахождении его в нижней мёртвой точке. Полный объём цилиндра равен сумме рабочего объёма цилиндра и объёма камеры сгорания.
  • Рабочий объём двигателя для многоцилиндровых двигателей — это произведение рабочего объёма на число цилиндров.
  • Степень сжатия — отношение полного объёма цилиндра к объёму камеры сгорания.


This article uses material from the Wikipedia article "Поршневой двигатель внутреннего сгорания", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Mechanical Engineering

AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD