powered by CADENAS

Social Share

Amazon

Подъёмная сила (7307 views - Transportation - Air Water Earth)

Подъёмная сила — составляющая полной аэродинамической силы, перпендикулярная вектору скорости движения тела в потоке жидкости или газа, возникающая в результате несимметричности обтекания тела потоком. Полная аэродинамическая сила — это интеграл от давления вокруг контура профиля крыла. Y + P = ∮ ∂ Ω ⁡ p n d ∂ Ω {\displaystyle \mathbf {Y} +\mathbf {P} =\oint \limits _{\partial \Omega }p\mathbf {n} \;d\partial \Omega } где: Y — подъёмная сила, P — тяга, ∂ Ω {\displaystyle \partial \Omega } — граница профиля, p — величина давления, n — нормаль к профилюСогласно теореме Жуковского, величина подъёмной силы пропорциональна плотности среды, скорости потока и циркуляции скорости потока. Приближённо возникновение подъёмной силы можно объяснить тем, что ввиду наличия инерции и вязкости у обтекающего крыло газа при ненулевом угле атаки с одной стороны крыла образуется разрежение, а с другой сжатие. Газу со стороны положительного угла атаки необходимо ускориться, преодолев инерцию, чтобы догнать «убегающую» поверхность крыла, а с другой стороны сжаться под воздействием набегающей поверхности. (Более подробно о связи полей скоростей, давления с инерцией и вязкостью среды можно прочитать в описании уравнений Бернулли и уравнения Навье — Стокса). Разность давлений и обусловливает появление силы, направленной в сторону положительного угла атаки. Если скорость потока воздуха над крылом v 1 {\displaystyle v_{1}} больше скорости потока воздуха v 2 {\displaystyle v_{2}} под крылом, то согласно уравнению Бернулли возникает перепад давлений Δ p = p 2 − p 1 {\displaystyle \Delta p=p_{2}-p_{1}} . Подъемную силу можно рассчитать по формуле F p = ( p 2 − p 1 ) S = ρ 2 ( v 1 2 − v 2 2 ) S {\displaystyle F_{p}=(p_{2}-p_{1})S={\frac {\rho }{2}}(v_{1}^{2}-v_{2}^{2})S} , где ρ {\displaystyle \rho } - плотность воздуха, S {\displaystyle S} - площадь крыла. Обозначив скорость потока воздуха относительно крыла через u {\displaystyle u} , а скорость циркуляционного потока через v {\displaystyle v} , получим v 1 = u + v {\displaystyle v_{1}=u+v} , v 2 = u − v {\displaystyle v_{2}=u-v} , F p = ρ 2 ( v 1 2 − v 2 2 ) S = ρ 2 ( v 1 + v 2 ) ( v 1 − v 2 ) S = ρ 2 2 u 2 v S = 2 ρ S v u {\displaystyle F_{p}={\frac {\rho }{2}}(v_{1}^{2}-v_{2}^{2})S={\frac {\rho }{2}}(v_{1}+v_{2})(v_{1}-v_{2})S={\frac {\rho }{2}}2u2vS=2{\rho }Svu} - формула Жуковского.
Go to Article

Explanation by Hotspot Model

Youtube


    

Подъёмная сила

Подъёмная сила

Подъёмная сила — составляющая полной аэродинамической силы, перпендикулярная вектору скорости движения тела в потоке жидкости или газа, возникающая в результате несимметричности обтекания тела потоком. Полная аэродинамическая сила — это интеграл от давления вокруг контура профиля крыла.

где:

  • Y — подъёмная сила,
  • P — тяга,
  •  — граница профиля,
  • p — величина давления,
  • n — нормаль к профилю

Согласно теореме Жуковского, величина подъёмной силы пропорциональна плотности среды, скорости потока и циркуляции скорости потока.

Приближённо возникновение подъёмной силы можно объяснить тем, что ввиду наличия инерции и вязкости у обтекающего крыло газа при ненулевом угле атаки с одной стороны крыла образуется разрежение, а с другой сжатие. Газу со стороны положительного угла атаки необходимо ускориться, преодолев инерцию, чтобы догнать «убегающую» поверхность крыла, а с другой стороны сжаться под воздействием набегающей поверхности. (Более подробно о связи полей скоростей, давления с инерцией и вязкостью среды можно прочитать в описании уравнений Бернулли и уравнения Навье — Стокса). Разность давлений и обусловливает появление силы, направленной в сторону положительного угла атаки.

Если скорость потока воздуха над крылом больше скорости потока воздуха под крылом, то согласно уравнению Бернулли возникает перепад давлений . Подъемную силу можно рассчитать по формуле , где - плотность воздуха, - площадь крыла. Обозначив скорость потока воздуха относительно крыла через , а скорость циркуляционного потока через , получим , , - формула Жуковского[1].

Коэффициент подъёмной силы

Коэффициент подъёмной силы — безразмерная величина, характеризующая подъёмную силу крыла определённого профиля при известном угле атаки. Коэффициент определяется экспериментальным путём в аэродинамической трубе, либо по теореме Жуковского.

Джон Смитон уже в XVIII веке рассчитал поправочный коэффициент подъёмной силы (далее Коэффициент Смитона, в формуле не указан) для формулы расчёта подъёмной силы. Формула имеет вид[2]:

где:

 — подъёмная сила (Н)
 — коэффициент подъёмной силы, зависящий от угла атаки (получается опытным путём для разных профилей крыла)
 — плотность воздуха на высоте полёта (кг/м³)
 — скорость набегающего потока (м/с)
 — характерная площадь (м²)

Формула для расчета лобового сопротивления сходна с вышеприведенной, за исключением того, что используется коэффициент лобового сопротивления вместо коэффициента подъёмной силы .

Поправочный коэффициент, значение которого по расчётам Смитона составляло 1.005, использовался более 100 лет, и только опыты Братьев Райт, в ходе которых они обнаружили, что подъёмная сила, действующая на планёры, была слабее расчётной, позволили уточнить «коэффициент Смитона» до значения 1.0033.

При расчётах по этой формуле важно не путать весовую и массовую плотность воздуха. Весовая плотность при стандартных атмосферных условиях (на уровне земли при температуре +15 °С) равна =1.225 кг/м3. Но в аэродинамических расчётах часто используют массовую плотность воздуха, которая равна 0.125 кГ*с24. В этом случае подъёмная сила Y получается не в ньютонах (Н), а в килограммах (кг). В книгах по аэродинамике[источник не указан 381 день] не всегда имеются уточнения, о какой плотности и размерности подъёмной силы идёт речь, поэтому в спорных ситуациях нужно проверять формулы, сокращая единицы измерения.



This article uses material from the Wikipedia article "Подъёмная сила", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Transportation - Air Water Earth

3D,CAD,Model,Libary,Railway, Train, Ship, Marine, Submarine, Automotive, Locomotive, Bike, Car, Formula 1, Space, Aircraft, Aerospace, Satelite, Automobile, Yacht