powered by CADENAS

Social Share

Цилиндр (4893 views - Basics)

Цили́ндр (др.-греч. κύλινδρος — валик, каток) — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её под прямым углом.
Go to Article

Explanation by Hotspot Model

Цилиндр

Цилиндр

Цилиндр

Цили́ндр (др.-греч. κύλινδρος — валик, каток) — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её под прямым углом.

Связанные определения

  • Цилиндрическая поверхность — поверхность, образуемая однопараметрическим семейством параллельных прямых (называемых образующими) и проходящими через точки некоторой кривой (называемой направляющей).
  • Плоские фигуры, образованные пересечением цилиндрической поверхности с двумя параллельными плоскостями называются основаниями цилиндра.
  • Цилиндрическая поверхность между плоскостями оснований называется боковой поверхностью цилиндра.
  • В случае параллельности плоскости основания и плоскости направляющей, граница основания будет по форме совпадать с направляющей.

Типы

В большинстве случаев под цилиндром подразумевается прямой круговой цилиндр, у которого направляющая — окружность и основания перпендикулярны образующей. У такого цилиндра имеется ось симметрии.

Другие виды цилиндра — (по наклону образующей) косой или наклонный (если образующая касается основания не под прямым углом); (по форме основания) эллиптический, гиперболический, параболический.

Призма также является разновидностью цилиндра — с основанием в виде многоугольника.

Площадь поверхности цилиндра

Площадь боковой поверхности

Площадь боковой поверхности цилиндра равна длине образующей, умноженной на периметр сечения цилиндра плоскостью, перпендикулярной образующей.

Площадь боковой поверхности прямого цилиндра вычисляется по его развёртке. Развёртка цилиндра представляет собой прямоугольник с высотой и длиной , равной периметру основания. Следовательно, площадь боковой поверхности цилиндра равна площади его развёртки и вычисляется по формуле:

В частности, для прямого кругового цилиндра:

, и , здесь и далее — радиус основания цилиндра.

Для наклонного цилиндра площадь боковой поверхности равна длине образующей, умноженной на периметр сечения, перпендикулярного образующей:

Простой формулы, выражающей площадь боковой поверхности косого цилиндра через параметры основания и высоту, в отличие от объёма не существует. Для наклонного кругового цилиндра можно воспользоваться приближёнными формулами для периметра эллипса, а затем умножить полученное значение на длину образующей.

Площадь полной поверхности

Площадь полной поверхности цилиндра равна сумме площадей его боковой поверхности и его оснований.

Для прямого кругового цилиндра:

Объём цилиндра

Для наклонного цилиндра существуют две формулы:

  • Объём равен длине образующей, умноженной на площадь сечения цилиндра плоскостью, перпендикулярной образующей.
    ,
  • Объём равен площади основания, умноженной на высоту (расстояние между плоскостями, в которых лежат основания):
    ,
где  — длина образующей, а  — угол между образующей и плоскостью основания. Для прямого цилиндра .

Для прямого цилиндра , и , и объём равен:

Для кругового цилиндра:

,

где d — диаметр основания.



This article uses material from the Wikipedia article "Цилиндр", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Basics

3d,cad,model,library,download,drawing,step,cad blocks,basics,university,highschool,college,grammer school,statistics,3dprinted