Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution 3.0 (неизвестен).
| |||||
Внешний вид простого вещества | |||||
---|---|---|---|---|---|
Свойства атома | |||||
Название, символ, номер |
Гадолиний / Gadolinium (Gd), 64 | ||||
Атомная масса (молярная масса) | |||||
Электронная конфигурация |
[Xe] 4f7 5d1 6s2 | ||||
Радиус атома |
179 пм | ||||
Химические свойства | |||||
Ковалентный радиус |
161 пм | ||||
Радиус иона |
(+3e) 93,8 пм | ||||
Электроотрицательность |
1,20 (шкала Полинга) | ||||
Электродный потенциал |
Gd←Gd3+ -2,28В | ||||
Степени окисления |
3 | ||||
Энергия ионизации (первый электрон) | |||||
Термодинамические свойства простого вещества | |||||
Плотность (при н. у.) |
7,900 г/см³ | ||||
Температура плавления |
1586 K | ||||
Температура кипения |
3539 K | ||||
Уд. теплота плавления |
10,0 кДж/моль | ||||
Уд. теплота испарения |
398 кДж/моль | ||||
Молярная теплоёмкость |
37,1[2] Дж/(K·моль) | ||||
Молярный объём | |||||
Кристаллическая решётка простого вещества | |||||
Структура решётки |
гексагональная | ||||
Параметры решётки |
a=3,636 c=5,783 Å | ||||
Отношение c/a |
1,590 | ||||
Прочие характеристики | |||||
Теплопроводность |
(300 K) (10,5) Вт/(м·К) | ||||
Номер CAS |
64 | Гадолиний
|
157,25 | |
4f75d16s2 |
Гадоли́ний (новолат. Gadolinium), Gd — химический элемент III группы периодической системы Менделеева, атомный номер — 64, атомная масса — 157,25. Относится к лантаноидам.
Гадолиний открыт в 1880 году Жаном де Мариньяком, который спектроскопически доказал присутствие в смеси оксидов редкоземельных элементов нового элемента.
Назван по имени финского химика Ю. Гадолина.
Кларк гадолиния в земной коре (по Тейлору) — 8 г/т, содержание в воде океанов — 2,4 × 10−6 мг/л.
Гадолиний входит в состав руд лантаноидов.
Гадолиний получают восстановлением фторида или хлорида гадолиния (GdF3, GdCl3) кальцием. Соединения гадолиния получают разделением оксидов редкоземельных металлов на фракции.
Цены на металлический гадолиний чистотой 99,9 % в конце 2014 года составили 132,5 долл. США за 1 кг[3].
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его. |
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его. |
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его. |
О гадолинии как о материале современной технологии рассказывать можно довольно долго, ибо этот элемент постоянно открывает все новые и новые области своего применения, и в немалой степени это обусловлено не только особыми ядерно-физическими свойствами, но и технологичностью. Основными областями применения гадолиния являются электроника и ядерная энергетика.
Ряд сплавов гадолиния и особенно сплав с кобальтом и железом позволяет создавать носители информации с колоссальной плотностью записи. Это обусловлено тем, что в этих сплавах образуются особые структуры — ЦМД — цилиндрические магнитные домены, причём размеры доменов менее 1 мкм, что позволяет создавать носители памяти для современной компьютерной техники с плотностью записи 1—9 миллиардов бит, что равно примерно 0,1—1 ГБ на 1 квадратный сантиметр площади носителя.
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 16 ноября 2014 года. |
Гадолиний применяется для выращивания методом Чохральского (вытягивание из расплава) монокристаллов гадолиний-галлиевого граната (ГГГ) и особенно гадолиний-галлий-скандиевого граната (ГГСГ), и др. Особые свойства ГСГГ позволяют на его основе изготавливать лазерные системы с предельно высоким КПД и сверхвысокими параметрами лазерного излучения. В принципе, ГСГГ на сегодняшний день является первым в достаточной степени изученным и имеющим отработанную технологию производства лазерным материалом — обладающим высоким КПД преобразования и пригодным для создания лазерных систем для инерциального термоядерного синтеза.
Ванадат гадолиния с ионами неодима и тулия применяется для производства твердотельных лазеров, применяемых для лучевой обработки металлов и камня, а также и в медицине.
В атомной технике гадолиний нашел применение для защиты от тепловых нейтронов, так как этот элемент обладает наивысшей способностью к захвату нейтронов из всех стабильных элементов. Его сечение равно 49 000 барн. Из всех изотопов гадолиния наивысшей способностью к захвату нейтронов обладает его изотоп гадолиний-157 (сечение захвата — 254 000 барн).
В этой связи гадолиний очень интересен для управления ядерным реактором и для конструирования защиты от нейтронов. На основе окиси гадолиния изготавливаются эмали, керамика и краски, используемые в атомной технике. Для регулирования атомного реактора применяется также борат гадолиния. Растворимые соединения гадолиния могут быть использованы для стабилизации растворов, получаемых при переработке ТВЭЛов растворением в кислотах для последующего разделения. Стабилизирующее действие солей гадолиния проявляется в способности «глушить» ядерные реакции в таких растворах, и позволяет осуществлять ряд технологических операций, связанных с концентрированием таких растворов, а значит, с уменьшением критического объёма и образованием критических масс.
Оксид гадолиния используется для варки стекла, поглощающего тепловые нейтроны. Самый распространенный состав такого стекла: оксид бора — 33 %, оксид кадмия — 35 %, оксид гадолиния — 32 %.
В небольшом объёме гадолиний применяется для получения сверхнизких температур в научных исследованиях, так, например, сульфат гадолиния при размагничивании вблизи к Абсолютному нулю температур позволяет снизить температуру до 0,0001 К. Наряду с сульфатом гадолиния для получения сверхнизких температур используют также и хлорид гадолиния.
В качестве одного из базовых компонентов входит в состав сверхпроводящей керамики с общей формулой RE-123, где RE обозначает редкоземельные металлы. Полная формула высокотемпературной сверхпроводящей керамики на основе гадолиния — GdBa2Cu3O7-δ, сокращенно — GdBCO. Температура сверхпроводящего перехода — около 94 К. Является одним из наиболее передовых ВТСП-материалов.
Гексаборид гадолиния применяется для изготовления катодов мощных электронных пушек и рентгеновских установок, ввиду самой маленькой работы выхода из всех боридов редких земель — его работа в 2,05 эВ сравнима с работой выхода щелочных металлов (калий, рубидий, цезий).
Использование ионов гадолиния для возбуждения лазерного излучения позволяет создать лазер, работающий в ближнем ультрафиолетовом диапазоне с длиной волны 310 нм.
Сплав гадолиний-железо применяется как очень емкий аккумулятор водорода, и может быть применен для водородного автомобиля.
Гадолиний-153 используется в качестве источника излучения в медицине для диагностики остеопороза. Хлорид гадолиния применяется для блокады клеток Купфера при лечении печени.
Контрастный препарат гадодиамид также содержит гадолиний. Контрастный препарат представляет раствор его водорастворимой соли, который вводится внутривенно и накапливается в областях с повышенным кровоснабжением (например, злокачественных опухолях). Из-за содержания редкоземельных элементов контрастное вещество относительно дорогое — цена одной дозы в 2010 году составляет 5000—10 000 рублей. Ряд МРТ-исследований неинформативен без контрастного усиления. Первое парамагнитное контрастное вещество было создано фирмой «Байер» в 1988 году[4].
Сплав гадолиния и никеля применяется для изготовления контейнеров для захоронения радиоактивных отходов.
Сплав гадолиния, германия, кремния и небольшого количества железа (1 %) применяется для производства магнитных холодильников (на основе гигантского магнитокалорического эффекта).
Чистый гадолиний имеет максимальное значение магнитокалорического эффекта в точке Кюри (около 290 K) порядка 4,9 К при адиабатическом намагничивании полем 20 кЭ[источник не указан 436 дней]. Также особый интерес в последние годы привлекает к себе сплав гадолиний — тербий (монокристаллический).
Теллурид гадолиния может работать в мощном потоке нейтронов как очень хороший термоэлектрический материал (термо-э.д.с. 220—250 мкВ/К). Селенид гадолиния имеет отличные термоэлектрические свойства и весьма перспективный и применяемый материал в производстве радиоизотопных источников энергии.
Некоторое количество гадолиния постоянно расходуется для производства специальных титановых сплавов (повышает предел прочности и текучести при легировании уже около 5 % гадолинием).
Гадолиний-148, испытывающий альфа-распад (период полураспада 93 года), является безопасным и в то же время исключительно мощным источником тепла для радиоизотопных термоэлектрогенераторов.
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его. |
This article uses material from the Wikipedia article "Гадолиний", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
element,system,atom,molecule,metal,halogen,noble gas,chemical,chemistry