Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution 3.0 (grenadier).
| |||||
Внешний вид простого вещества | |||||
---|---|---|---|---|---|
Свойства атома | |||||
Название, символ, номер |
Ра́дий / Radium (Ra), 88 | ||||
Атомная масса (молярная масса) | |||||
Электронная конфигурация |
[Rn] 7s2 | ||||
Химические свойства | |||||
Радиус иона |
(+2e) 143 пм | ||||
Электроотрицательность |
0,9 (шкала Полинга) | ||||
Электродный потенциал |
Ra←Ra2+ −2,916 В | ||||
Степени окисления |
2 | ||||
Энергия ионизации (первый электрон) |
1-й 509,3 (5,2785) кДж/моль (эВ) | ||||
Термодинамические свойства простого вещества | |||||
Плотность (при н. у.) |
(при к.т.) 5,5 г/см³ | ||||
Температура плавления |
1233 K | ||||
Температура кипения |
2010 K | ||||
Уд. теплота плавления |
8,5 кДж/моль | ||||
Уд. теплота испарения |
113 кДж/моль | ||||
Молярная теплоёмкость |
29,3[1] Дж/(K·моль) | ||||
Молярный объём | |||||
Кристаллическая решётка простого вещества | |||||
Структура решётки |
кубическая объёмноцентрированая | ||||
Параметры решётки |
5,148[2] | ||||
Прочие характеристики | |||||
Теплопроводность |
(300 K) (18,6) Вт/(м·К) | ||||
Номер CAS |
88 | Радий
|
(226) | |
7s2 |
Ра́дий — элемент главной подгруппы второй группы, седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 88. Обозначается символом Ra (лат. Radium). Простое вещество радий — блестящий щёлочноземельный металл серебристо-белого цвета, быстро тускнеющий на воздухе. Обладает высокой химической активностью. Радиоактивен; наиболее устойчив нуклид 226Ra (период полураспада около 1600 лет).
Французские ученые Пьер и Мария Кюри обнаружили, что отходы, остающиеся после выделения урана из урановой руды (урановая смолка, добывавшаяся в городе Иоахимсталь, Чехия), более радиоактивны, чем чистый уран. Из этих отходов супруги Кюри после нескольких лет интенсивной работы выделили два сильно радиоактивных элемента: полоний и радий. Первое сообщение об открытии радия (в виде смеси с барием) Кюри сделали 26 декабря 1898 года во Французской Академии наук. В 1910 году Кюри и Андре Дебьерн выделили чистый радий путём электролиза хлорида радия на ртутном катоде и последующей дистилляции в водороде. Выделенный элемент представлял собой, как сейчас известно, изотоп радий-226, продукт распада урана-238. За открытие радия и полония супруги Кюри получили Нобелевскую премию. Радий образуется через многие промежуточные стадии при радиоактивном распаде изотопа урана-238 и поэтому находится в небольших количествах в урановой руде.
В России радий впервые был получен в экспериментах известного советского радиохимика В. Г. Хлопина.
В 1918 году на базе Государственного рентгеновского института было организовано Радиевое отделение.
Это отделение в 1922 году получило статус отдельного научного института.
Одной из задач Радиевого института были исследования радиоактивных элементов, в первую очередь — радия.
Директором нового института стал В. И. Вернадский, его заместителем — В. Г. Хлопин, физический отдел института возглавил Л. В. Мысовский[3].
Многие радионуклиды, возникающие при радиоактивном распаде радия, до того как была выполнена их химическая идентификация, получили наименования вида радий А, радий B, радий C и т. д. Хотя сейчас известно, что они представляют собой изотопы других химических элементов, их исторически сложившиеся названия по традиции иногда используются:
Изотоп | |
Эманация радия | 222Rn |
Радий A | 218Po |
Радий B | 214Pb |
Радий C | 214Bi |
Радий C1 | 214Po |
Радий C2 | 210Tl |
Радий D | 210Pb |
Радий E | 210Bi |
Радий F | 210Po |
Названная в честь Кюри внесистемная единица радиоактивности кюри, равная 3,7·1010 распадов в секунду, или 37 ГБк, ранее была основана на активности 1 г радия-226. Но так как активность 1 г радия-226 примерно на 1,3 % меньше, чем 1 Ки, в настоящее время эта единица определяется как 37 миллиардов распадов в секунду (точно).
Название «радий» связано с излучением ядер атомов Ra (лат. radius — луч).
Радий довольно редок. За прошедшее с момента его открытия время — более столетия — во всём мире удалось добыть всего только 1,5 кг чистого радия. Одна тонна урановой смолки, из которой супруги Кюри получили радий, содержит лишь около 0,0001 г радия-226. Весь природный радий является радиогенным — возникает при распаде урана-238, урана-235 или тория-232; из четырёх найденных в природе наиболее распространённым и долгоживущим изотопом (период полураспада 1602 года) является радий-226, входящий в радиоактивный ряд урана-238. В равновесии отношение содержания урана-238 и радия-226 в руде равно отношению их периодов полураспада: (4,468·109 лет)/(1602 года)=2,789·106. Таким образом, на каждые три миллиона атомов урана в природе приходится лишь один атом радия или 1,02 мкг/т (кларк в земной коре).
Все природные изотопы радия сведены в таблицу:
Изотоп | Историческое название | Семейство | Период полураспада | Тип распада | Дочерний изотоп (историческое название) |
---|---|---|---|---|---|
Радий-223 | актиний Х (AcX) | ряд урана-235 | 11,435 дня | α | радон-219 (актинон, An) |
Радий-224 | торий Х (ThX) | ряд тория-232 | 3,66 дня | α | радон-220 (торон, Tn) |
Радий-226 | радий (Ra) | ряд урана-238 | 1602 года | α | радон-222 (радон, Rn) |
Радий-228 | мезоторий I (MsTh1) | ряд тория-232 | 5,75 года | β | актиний-228 (мезоторий II, MsTh2) |
Геохимия радия во многом определяется особенностями миграции и концентрации урана, а также химическими свойствами самого радия — активного щёлочноземельного металла. Среди процессов, способствующих концентрированию радия, следует указать в первую очередь на формирование на небольших глубинах геохимических барьеров, в которых концентрируется радий. Такими барьерами могут быть, например, сульфатные барьеры в зоне окисления. Поднимающиеся снизу хлоридные сероводородные радийсодержащие воды в зоне окисления становятся сульфатными, радий осаждается с BaSO4 и CaSО4, где он становится практически нерастворимым постоянным источником радона. Из-за высокой миграционной способности урана и способности его к концентрированию формируются многие типы урановых рудообразований в гидротермах, углях, битумах, углистых сланцах, песчаниках, торфяниках, фосфоритах, бурых железняках, глинах с костными остатками рыб (литофациями). При сжигании углей зола и шлаки обогащаются 226Ra. Также содержание радия повышено в фосфатных породах.
В результате распада урана и тория и выщелачивания из вмещающих пород в нефти постоянно образуются радионуклиды радия. В статическом состоянии нефть находится в природных ловушках, обмена радием между нефтью и подпирающими её водами нет (кроме зоны контакта вода—нефть) и в результате имеется избыток радия в нефти. При разработке месторождения пластовые и закачиваемые воды интенсивно поступают в нефтяные пласты, поверхность раздела вода—нефть резко увеличивается, и в результате радий уходит в поток фильтрующихся вод. При повышенном содержании сульфат-ионов растворенные в воде радий и барий осаждаются в виде радиобарита Ва(Ra)SО4, который выпадает на поверхности труб, арматуры, резервуаров. Типичная объёмная активность поступающей на поверхность водонефтяной смеси по 226Rа и 228Rа может быть порядка 10 Бк/л (соответствует жидким радиоактивным отходам).
Основная масса радия находится в рассеянном состоянии в горных породах. Радий — химический аналог щелочных и щёлочноземельных породообразующих элементов, из которых состоят полевые шпаты, составляющие половину массы земной коры. Калиевые полевые шпаты — главные породообразующие минералы кислых магматических пород — гранитов, сиенитов, гранодиоритов и др. Известно, что граниты обладают природной радиоактивностью несколько выше фоновой из-за содержащегося в них урана. Хотя кларк урана не превышает 3 г/т, но в гранитах его содержание составляет уже 25 г/т. Но если гораздо более распространённый химический аналог радия барий входит в состав довольно редких калий-бариевых полевых шпатов (гиалофанов), а «чистый» бариевый полевой шпат, минерал цельзиан BaAl2Si2O8 очень редок, то накопления радия с образованием радиевых полевых шпатов и минералов вообще не происходит из-за короткого периода полураспада радия. Радий распадается на радон, уносящийся по порам и микротрещинкам и вымывающийся с грунтовыми водами. В природе иногда встречаются молодые радиевые минералы, не содержащие уран, например, радиобарит и радиокальцит, при кристаллизации которых из растворов, обогащённых радием (в непосредственной близости от легкорастворимых вторичных урановых минералов), радий сокристаллизуется с барием и кальцием благодаря изоморфизму.
Получить чистый радий в начале ХХ в. стоило огромного труда. Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало ХХ в. в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.
Обычно радий добывается из урановых руд. В рудах, достаточно старых для установления векового радиоактивного равновесия в ряду урана-238, на тонну урана приходится 333 миллиграмма радия-226.
Существует также способ добычи радия из радиоактивных природных вод, выщелачивающих радий из урансодержащих минералов. Содержание радия в них может доходить до 7,5×10−9 г/г. Так, на месте нынешнего поселка Водный Ухтинского района Республики Коми с 1931 г. до 1956 г. действовало единственное в мире предприятие, где радий выделяли из подземных минерализованных вод Ухтинского месторождения, так называемый «Водный промысел»[4].
Из анализа документов, сохранившихся в архиве правопреемника этого завода (ОАО Ухтинский электрокерамический завод «Прогресс»), было подсчитано, что до закрытия на «Водном промысле» было выпущено примерно 271 г радия. В 1954 г. мировой запас добытого радия оценивался в 2,5 кг. Таким образом, к началу 50-х гг. примерно каждый десятый грамм радия был получен на «Водном промысле»[4].
Радий при нормальных условиях представляет собой блестящий белый металл, на воздухе темнеет (вероятно, вследствие образования нитрида радия). Реагирует с водой. Ведёт себя подобно барию и стронцию, но более химически активен. Обычная степень окисления — +2. Гидроксид радия Ra(OH)2 — сильное, коррозионное основание.
Ввиду сильной радиоактивности радия его соединения светятся в темноте (радиохемилюминесценция)[источник?], а в водных растворах его солей происходит радиолиз.
В настоящее время радий иногда используют в компактных источниках нейтронов, для этого небольшие его количества сплавляются с бериллием. Под действием альфа-излучения (ядер гелия-4) из бериллия выбиваются нейтроны:
В медицине радий используют как источник радона для приготовления радоновых ванн (хотя в настоящее время их полезность оспаривается). Кроме того, радий применяют для кратковременного облучения при лечении злокачественных заболеваний кожи, слизистой оболочки носа, мочеполового тракта.
Однако в настоящее время существует множество более подходящих для этих целей радионуклидов с нужными свойствами, которые получают на ускорителях или в ядерных реакторах, например, 60Co (T1/2 = 5,3 года), 137Cs (T1/2 = 30,2 года), 182Ta (T1/2 = 115 сут.), 192Ir (T1/2 = 74 сут.), 198Au (T1/2 = 2,7 сут.) и т. д.
До 70-х годов XX века радий часто использовался для изготовления светящихся красок постоянного свечения (для разметки циферблатов авиационных и морских приборов, специальных часов и других приборов), однако сейчас его обычно заменяют менее опасными изотопами: тритием (T1/2 = 12,3 года) или 147Pm (T1/2 = 2,6 года). Иногда часы с радиевым светосоставом выпускались и в гражданском исполнении, в том числе наручные. Также радиевую светомассу в быту можно встретить в некоторых старых ёлочных игрушках, тумблерах с подсветкой кончика рычажка, на шкалах некоторых старых радиоприёмников и прочее. Характерный признак светосостава постоянного действия советского производства — краска горчично-жёлтого цвета, хотя иногда цвет бывает и другим (белым, зеленоватым, тёмно-оранжевым и прочее). Опасность таких приборов состоит в том, что они не содержали предупреждающей маркировки, выявить их можно только дозиметрами. Также люминофор с годами деградирует и краска к нашему времени зачастую перестаёт светиться, что, разумеется, не делает её менее опасной, так как радий никуда не девается. Ещё одна опасная особенность радиевой светомассы в том, что со временем краска деградирует и может начать осыпаться, и пылинка такой краски, попавшая внутрь организма с едой или при вдохе, способна причинить большой вред за счёт альфа-излучения.
Радий чрезвычайно радиотоксичен. В организме он ведёт себя подобно кальцию — около 80 % поступившего в организм радия накапливается в костной ткани. Большие концентрации радия вызывают остеопороз, самопроизвольные переломы костей и злокачественные опухоли костей и кроветворной ткани. Опасность представляет также радон — газообразный радиоактивный продукт распада радия.
Преждевременная смерть Марии Кюри произошла вследствие хронического отравления радием, так как в то время опасность облучения ещё не была осознана. В начале XX века радий даже считался полезным и включался в состав многих продуктов и бытовых предметов: хлеб, шоколад, питьевая вода, зубная паста, пудры и кремы для лица, краска циферблатов наручных часов, средство для повышения тонуса и потенции[5][6].
Известны 25 изотопов радия. Изотопы 223Ra, 224Ra, 226Ra, 228Ra встречаются в природе, являясь членами радиоактивных рядов. Остальные изотопы могут быть получены искусственным путём. Радиоактивные свойства некоторых изотопов радия[7]:
Массовое число | Период полураспада | Тип распада |
---|---|---|
213 | 2,74(6) мин. | α |
219 | 10(3) мс | α |
220 | 17,9(14) мс | α (99%) |
221 | 28(2) с | α |
222 | 38,0(5) с | α |
223 (AcX) | 11,43(5) дня | α |
224 (ThX) | 3,6319(23) дня | α |
225 | 14,9(2) дня | β |
226 | 1602(7) лет | α |
227 | 42,2(5) мин. | β |
228 (MsTh1) | 5,75(3) года | β |
230 | 93(2) мин. | β |
Репродукции продуктов, содержащих радий, выпускавшихся в начале XX века, на витрине в Музее Марии Кюри, Париж.
Надпись на баночке: «Пудра ТО-РАДИЙ на основе радия и тория по формуле Альфреда Кюри...»
This article uses material from the Wikipedia article "Радий", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
element,system,atom,molecule,metal,halogen,noble gas,chemical,chemistry