powered by CADENAS

Social Share

Германий (16633 views - Periodic Table Of Elements)

Герма́ний — химический элемент 14-й группы (по устаревшей классификации — главной подгруппы четвёртой группы) 4 периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 32. Обозначается символом Ge (нем. Germanium). Простое вещество германий — типичный полупроводник серо-белого цвета, с металлическим блеском.
Go to Article

Германий

Германий

32 ГаллийГерманийМышьяк
Si

Ge

Sn
ВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесон
32Ge
Внешний вид простого вещества

Светло-серый полупроводник с металлическим блеском
Свойства атома
Название, символ, номер

Герма́ний / Germanium (Ge), 32

Атомная масса
(молярная масса)

72,630(8)[1] а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d10 4s2 4p2

Радиус атома

122,5 пм

Химические свойства
Ковалентный радиус

122 пм

Радиус иона

(+4e) 53 (+2e) 73 пм

Электроотрицательность

2,01 (шкала Полинга)

Электродный потенциал

0

Степени окисления

4, 2

Энергия ионизации
(первый электрон)

 760,0 (7,88) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

5,323 г/см³

Температура плавления

1210,6 K

Температура кипения

3103 K

Уд. теплота плавления

36,8 кДж/моль

Уд. теплота испарения

328 кДж/моль

Молярная теплоёмкость

23,32[2] Дж/(K·моль)

Молярный объём

13,6 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

алмазная

Параметры решётки

5,660 Å

Температура Дебая

360 K

Прочие характеристики
Теплопроводность

(300 K) 60,2 Вт/(м·К)

Номер CAS

7440-56-4

32
Германий
72,630
3d104s24p2

Герма́ний — химический элемент 14-й группы (по устаревшей классификации — главной подгруппы четвёртой группы) 4 периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 32. Обозначается символом Ge (нем. Germanium). Простое вещество германий — типичный полупроводник серо-белого цвета, с металлическим блеском.

История открытия и этимология

Клеменс Александр Винклер — первооткрыватель германия
Аргиродит

В своём докладе о периодическом законе химических элементов в 1869 году русский химик Дмитрий Иванович Менделеев предсказал существование нескольких неизвестных на то время химических элементов, в частности и германия. В статье, датированной 11 декабря (29 ноября по старому стилю) 1870 года, Д. И. Менделеев назвал неоткрытый элемент экасилицием (из-за его местонахождения в Периодической таблице) и предсказал его атомную массу и другие свойства[3][4].

В 1885 году в Фрайберге (Саксония) в одной из шахт был обнаружен новый минерал аргиродит. При химическом анализе нового минерала немецкий химик Клеменс Винклер обнаружил новый химический элемент. Учёному удалось в 1886 году выделить этот элемент, также химиком была отмечена схожесть германия с сурьмой. Об открытии нового элемента Винклер сообщил в двухстраничной статье, датируемой 6 февраля 1886 года и предложил в ней имя для нового элемента Germanium и символ Ge[5]. В последующих двух больших статьях 1886—1887 гг. Винклер подробно описал свойства германия[6][7].

Первоначально Винклер хотел назвать новый элемент «нептунием», но это название было дано одному из предполагаемых элементов, поэтому элемент получил название в честь родины учёного — Германии.

Путём анализа тетрахлорида германия GeCl4 Винклер определил атомный вес германия, а также открыл несколько новых соединений этого металла[7].

До конца 1930-х годов германий не использовался в промышленности[8]. Во время Второй мировой войны германий использовался в некоторых электронных устройствах, главным образом в диодах[9].

Нахождение в природе

Общее содержание германия в земной коре 1,5·10−4% по массе, то есть больше, чем, например, сурьмы, серебра, висмута. Германий вследствие незначительного содержания в земной коре и геохимического сродства с некоторыми широко распространёнными элементами обнаруживает ограниченную способность к образованию собственных минералов, внедряясь в кристаллические решётки других минералов. Поэтому собственные минералы германия встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2(Cu, Fe, Ge, Zn)2 (S, As)4 (6—10 % Ge), аргиродит Ag8GeS6 (3,6—7 % Ge), конфильдит Ag8(Sn, Ge) S6 (до 2 % Ge) и др. редкие минералы (ультрабазит, ранерит, франкеит). Основная масса германия рассеяна в земной коре в большом числе горных пород и минералов. Так, например, в некоторых сфалеритах содержание германия достигает килограммов на тонну, в энаргитах до 5 кг/т, в пираргирите до 10 кг/т, в сульваните и франкеите 1 кг/т, в других сульфидах и силикатах — сотни и десятки г/т. Германий концентрируется в месторождениях многих металлов — в сульфидных рудах цветных металлов, в железных рудах, в некоторых окисных минералах (хромите, магнетите, рутиле и др.), в гранитах, диабазах и базальтах. Кроме того, германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти. Концентрация германия в морской воде 6·10−5 мг/л[10].

Получение

Германий встречается в виде примеси к полиметаллическим, никелевым, вольфрамовым рудам, а также в силикатах. В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO2, который восстанавливают водородом при 600 °C до простого вещества:

Получение чистого германия происходит методом зонной плавки, что делает его одним из самых химически чистых материалов[11].

Промышленное производство германия в России

А. А. Бурба — создатель металлургии германия в России

Производство германия в промышленных масштабах в России началось в 1959 году, когда на Медногорском медно-серном комбинате (ММСК) был введён в действие цех переработки пыли[12][13]. Специалисты комбината под руководством А. А. Бурбы в сотрудничестве с проектным институтом «Унипромедь» разработали и внедрили в производство уникальную химико-металлургическую технологию получения германиевого концентрата путём комплексной переработки пылей шахтных металлургических печей медеплавильного производства и золы от сжигания энергетических углей, служивших топливом для электростанции[14]. После этого СССР смог полностью отказаться от импорта германия. Впервые в мировой практике было выполнено извлечение германия из медноколчеданных руд. Пуск промышленного цеха переработки пыли на ММСК относят к крупнейшим внедрениям в цветной металлургии ХХ века[15].

В 1962 году по инициативе и при участии А. А. Бурбы аналогичное производство было создано также на Ангренском химико-металлургическом заводе (АХМЗ) в городе Ангрен в Узбекистане (ныне предприятие «Ангренэнергоцветмет»)[16][17]. Практически весь объём производства концентрата германия в СССР приходился на ММСК и АХМЗ[18]. Создание крупномасштабного производства германия внесло значительный вклад в обеспечение экономической и оборонной безопасности страны. Уже в 1960-е годы Советский Союз смог отказаться от импорта германия, а в 1970-е начать его экспорт и стать мировым лидером по производству германия[19].

Для переработки выпускавшегося на ММСК и АХМЗ германиевого концентрата в конечные продукты (чистый германий и его соединения) в 1961—1962 гг. на Красноярском аффинажном заводе (с 1967 г. — Красноярский завод цветных металлов, затем — ОАО «Красцветмет») был создан цех по производству германия (с 1991 г. — ОАО «Германий»)[20][21]. В 1962—1963 гг. цех производил 600 кг монокристаллического германия в год[22]. В 1968—1969 гг., когда внутренние потребности в германии были обеспечены, СССР впервые начал экспортировать диоксид германия, а в 1970 г. начался также экспорт поликристаллического зонноочищенного германия[23]. СССР удерживал мировое лидерство по производству германия, увеличив выпуск металла настолько, что до 40 % производства уходило на экспорт[24]. После распада СССР, вплоть до 2010 г., ММСК оставался единственным производителем германиевого концентрата в России[25]. С 2010 г. производство германия в концентрате на ММСК приостановлено, а оборудование законсервировано. Одновременно с этим начато производство германия в концентрате на ООО «Германий и приложения» в г. Новомосковске Тульской области[26][27].

В 2000-х годах для получения германия в России используются германиеносные угли следующих месторождений: Павловское (Михайловский район Приморского края), Новиковское (Корсаковский городской округ Сахалинской области), Тарбагатайское (Петровск-Забайкальский район Забайкальского края). Германиеносные угли этих месторождений в среднем содержат 200 граммов германия на тонну[28][29].

Физические свойства

Элементарная кристаллическая ячейка германия типа алмаза.

Германий — хрупкий, серебристо-белый полуметалл. Кристаллическая решётка устойчивой при нормальных условиях аллотропной модификации — кубическая типа алмаза[30].

Температура плавления 938,25 °C, температура кипения 2850 °C, плотность германия 5,33 г/см3[30].

Теплоёмкость германия имеет аномальный вид, а именно, содержит пик над уровнем нормальной (колебательной) составляющей[31][32], который, как пишет Ф.Зейтц : «не может быть объяснён никакой теорией, предполагающей гуковский закон сил, ибо никакая суперпозиция эйнштейновских функций не даёт кривой с максимумом»[33] и объясняется, как и аномальность поведения теплоёмкостей гафния, алмаза и графита, больцмановским фактором, контролирующим диффузионную (диссоциационную) компоненту[34].

Германий является одним из немногих аномальных веществ, которые увеличивают плотность при плавлении. Плотность твёрдого германия 5,327 г/см3 (25 °С), жидкого — 5,557 г/см3 (1000 °С)[35]. Другие вещества, обладающие этим свойством — вода, кремний, галлий, сурьма, висмут, церий.

Германий по электрофизическим свойствам является непрямозонным полупроводником.

Основные полупроводниковые свойства нелегированного монокристаллического германия

Легированный галлием германий в виде тонкой плёнки переходит при низких температурах в сверхпроводящее состояние[39].

Изотопы

Природный германий состоит из смеси пяти изотопов: 70Ge (20,55 % масс.), 72Ge (27,37 %), 73Ge (7,67 %), 74Ge (36,74 %), 76Ge (7,67 %).

Первые четыре изотопа стабильны, пятый (76Ge) весьма слабо радиоактивен и испытывает двойной бета-распад с периодом полураспада 1,58·1021 лет.

Искусственно получено 27 радиоизотопов с атомными массами от 58 до 89. Наиболее стабильным из радиоизотопов является 68Ge, с периодом полураспада 270,95 суток. А наименее стабильным — 60Ge, с периодом полураспада 30 мс.

Химические свойства

В химических соединениях германий обычно проявляет валентности 4 или 2. Соединения с валентностью 4 стабильнее. При нормальных условиях устойчив к действию воздуха и воды, щелочей и кислот, растворим в царской водке и в щелочном растворе перекиси водорода.

Соединения германия

Неорганические

Органические

Германийорганические соединения — металлоорганические соединения содержащие связь «германий-углерод». Иногда ими называются любые органические соединения, содержащие германий.

Первое германоорганическое соединение — тетраэтилгерман, было синтезировано немецким химиком Клеменсом Винклером (нем. Clemens Winkler) в 1887 году

Применение

В 2007 году основными потребителями германия были: 35 % волоконная оптика; 30 % тепловизорная оптика; 15 % химические катализаторы; 15 % электроника; небольшие количества германия потребляет металлургия.[40]

Оптика

Пример линзы из кристаллического германия в военных инфракрасных камерах на танке Армата Т-14
  • Благодаря прозрачности в инфракрасной области спектра металлический германий сверхвысокой чистоты имеет стратегическое значение в производстве оптических элементов инфракрасной оптики: линз, призм, оптических окон датчиков[41][42]. Наиболее важная область применения — оптика тепловизионных камер, работающих в диапазоне длин волн от 8 до 14 микрон. Это диапазон для наиболее популярных инфракрасных матриц на микроболометрах используемых в системах пассивного тепловидения, военных системах инфракрасного наведения, приборах ночного видения, противопожарных системах. Германий также используется в ИК-спектроскопии в оптических приборах, использующих высокочувствительные ИК-датчики[42]. Германий проигрывает по пропускающей способности света в диапазоне от 8 до 14 микрон сульфиду цинка.[43] Однако германий в отличии от сульфида цинка продолжает пропускать порядка 25 % инфракрасного излучения до длины волны 23 микрона, поэтому является одним из основных материалов для длинноволновой инфракрасной оптики обычно используемой в военных прицелах.[44]
  • Оптические детали из Ge обладают очень высоким показателем преломления (4,0) и обязательно требует использования просветляющих покрытий. В частности, используется покрытие из очень твердого алмазоподобного углерода, с показателем преломления 2,0[45][46].
  • Наиболее заметные физические характеристики оксида германия (GeO2) — его высокий показатель преломления и низкая оптическая дисперсия. Эти свойства находят применение в изготовлении широкоугольных объективов камер, микроскопии, и производстве оптического волокна.
  • Тетрахлорид германия используется в производстве оптоволокна, так как образующийся в процессе разложения этого соединения диоксид германия удобен для данного применения благодаря своему высокому показателю преломления и низкому оптическому рассеиванию и поглощению.
  • Сплав GeSbTe используется при производстве перезаписываемых DVD. Сущность перезаписи заключается в изменении оптических свойств этого соединения при фазовом переходе под действием лазерного излучения.[47]

Радиоэлектроника

  • До 1970-х годов германий был основным полупроводниковым материалом электронной промышленности и широко использовался в производстве транзисторов и диодов. Впоследствии германий был полностью вытеснен кремнием. Германиевые транзисторы и диоды обладают характеристиками, отличными от кремниевых, ввиду меньшего напряжения отпирания p-n-перехода в германии — 0,35…0,4 В против 0,6…0,7 В у кремниевых приборов[48][49]. Кроме того, обратные токи у германиевых приборов имеют сильную зависимость от температуры, и на несколько порядков больше таковых у кремниевых — скажем, в одинаковых условиях кремниевый диод будет иметь обратный ток 10 пА, а германиевый — 100 нА, что в 10000 раз больше. Также у германиевых приборов значительно выше шум и ниже температура, при которой происходит разрушение p-n-переходов[50]. По советскому ГОСТ 10862-64 (1964 г.) и более поздним стандартам германиевые полупроводниковые приборы имеют обозначение, начинающиеся с буквы Г или цифры 1, например: ГТ313, 1Т308 — высокочастотные маломощные транзисторы, ГД507 — импульсный диод. До того транзисторы имели индексы, начинающиеся с букв С, Т или П (МП), а диоды — Д, и определить материал прибора по индексу было сложнее. Диоды и транзисторы с индексами меньше 100, были германиевыми, от 100 до 199, — кремниевыми. Далее индексы зависели от частоты и мощности, причём, у транзисторов и диодов правила отличались. До конца 1960-х гг. германиевые полупроводниковые приборы использовались повсеместно, в настоящее время германиевые диоды и транзисторы практически полностью вытеснены кремниевыми, как имеющими значительно лучшие эксплуатационные характеристики.
  • Сейчас в электронике германий используется в СВЧ-устройствах, как составная часть структур SiGe, позволяя достичь субтерагерцовых частот[51]. Работы Жореса Алфёрова по структурам SiGe, в частности, заложили основу этого направления.
  • Теллурид германия применяется как стабильный термоэлектрический материал и компонент термоэлектрических сплавов (термо-ЭДС 50 мкВ/К).

Прочие применения

Экономика

Цены

Год Цена
($/кг)[52]
1999 1 400
2000 1 250
2001 890
2002 620
2003 380
2004 600
2005 660
2006 880
2007 1 240
2008 1 490
2009 950

Средние цены на германий в 2007 году[53]

  • Германий металлический $1200/кг
  • Германия диоксид $840/кг

Биологическая роль

Германий обнаружен в животных и растительных организмах. Малые количества германия не оказывают физиологического действия на растения, но токсичны в больших количествах. Германий нетоксичен для плесневых грибков.

Для животных германий малотоксичен. У соединений германия не обнаружено фармакологическое действие. Допустимая концентрация германия и его оксида в воздухе — 2 мг/м³, то есть такая же, как и для асбестовой пыли.

Соединения двухвалентного германия значительно более токсичны[54].



This article uses material from the Wikipedia article "Германий", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Periodic Table Of Elements

element,system,atom,molecule,metal,halogen,noble gas,chemical,chemistry