Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Лату́нь — двойной или многокомпонентный сплав на основе меди, где основным легирующим компонентом является цинк, иногда с добавлением олова (меньшим, чем цинка, иначе получится традиционная оловянная бронза), никеля, свинца, марганца, железа и других элементов. По металлургической классификации к бронзам не относится.
Несмотря на то, что цинк был открыт только в XVI веке, латунь была известна ещё до нашей эры[1][2]. Моссинойки получали её сплавляя медь с галмеем[3], то есть с цинковой рудой. Путём сплавления меди с металлическим цинком латунь впервые была получена в Англии, этот метод 13 июля 1781 года запатентовал Джеймс Эмерсон (британский патент № 1297)[4][5]. В XIX веке в Западной Европе и России латунь использовали в качестве поддельного золота.
Во времена Августа в Риме латунь называлась орихалк (лат. aurichalcum — буквально «златомедь»), из неё чеканились сестерции и дупондии. Орихалк получил название от цвета сплава, похожего на цвет золота.
Медь с цинком образуют кроме основного α-раствора ряд фаз электронного типа β, γ, ε. Наиболее часто структура латуней состоит из α- или α+β’- фаз: α-фаза — твёрдый раствор цинка в меди с кристаллической решёткой меди ГЦК, а β’-фаза — упорядоченный твёрдый раствор на базе химического соединения CuZn с электронной концентрацией 3/2 и примитивной элементарной ячейкой.
При высоких температурах β-фаза имеет неупорядоченное расположение ([ОЦК]) атомов и широкую область гомогенности. В этом состоянии β-фаза пластична. При температуре ниже 454—468 °C расположение атомов меди и цинка в этой фазе становится упорядоченным, и она обозначается β’. Фаза β’ в отличие от β-фазы является более твёрдой и хрупкой; γ-фаза представляет собой электронное соединение Cu5Zn8.
Однофазные латуни характеризуются высокой пластичностью; β’-фаза очень хрупкая и твёрдая, поэтому двухфазные латуни имеют более высокую прочность и меньшую пластичность, чем однофазные.
Влияние содержания цинка в меди на механические свойства отожжённых латуней:
При содержании цинка до 30 % возрастают одновременно и прочность, и пластичность. Затем пластичность уменьшается, вначале за счёт усложнения α — твёрдого раствора, а затем происходит резкое её понижение в связи с появлением в структуре хрупкой β’-фазы. Прочность увеличивается до содержания цинка около 45 % , а затем уменьшается так же резко, как и пластичность.
Большинство латуней хорошо обрабатывается давлением. Особенно пластичны однофазные латуни. Они деформируются при низких и при высоких температурах. Однако в интервале 300—700 °C существует зона хрупкости, поэтому при таких температурах латуни не деформируют.
Двухфазные латуни пластичны при нагреве выше температуры β’-превращения, особенно выше 700 °C, когда их структура становится однофазной (β-фаза). Для повышения механических свойств и химической стойкости латуней в них часто вводят легирующие элементы: алюминий (Al), никель (Ni), марганец (Mn), кремний (Si) и т. д.
Принята следующая маркировка. Латунный сплав обозначают буквой «Л», после чего следуют буквы основных элементов, образующих сплав. В марках деформируемых латуней первые две цифры после буквы «Л» указывают среднее содержание меди в процентах. Например, Л70 — латунь, содержащая 70 % Cu. В случае легированных деформируемых латуней указывают ещё буквы и цифры, обозначающие название и количество легирующего элемента, ЛАЖ60-1-1 означает латунь с 60 % Cu, легированную алюминием (А) в количестве 1 % и железом (Ж) в количестве 1 %. Содержание Zn определяется по разности от 100 %. В литейных латунях среднее содержание компонентов сплава в процентах ставится сразу после буквы, обозначающей его название. Например, латунь ЛЦ40Мц1,5 содержит 40 % цинка (Ц) и 1,5 % марганца (Мц).
Общая мировая потребность в цинке для изготовления латуни составляет в настоящее время около 2,1 млн т. При этом в производстве используется 1 млн т. первичного цинка, 600 тыс. т. цинка, полученного из отходов собственного производства, и 0,5 млн т вторичного сырья. Таким образом, более 50% цинка, используемого в производстве латуни, получают из отходов. Технические латуни содержат обычно до 48-50% цинка. В зависимости от содержания цинка различают альфа-латуни и альфа+бета-латуни. Однофазные альфа-латуни (до 35% цинка) хорошо деформируются в горячем и холодном состояниях. В свою очередь двухфазные альфа+бета-латуни (до 47- 50% цинка) малопластичны в холодном состоянии. Их обычно подвергают горячей обработке давлением при температурах, соответствующих области альфа- или альфа+бета-фаз. По сравнению с альфа-латунью двухфазные латуни обладают большей прочностью и износостойкостью при меньшей пластичности. Двойные латуни нередко легируют алюминием, железом, магнием, свинцом или другими элементами. Такие латуни называют специальными или многокомпонентными. Легирующие элементы (кроме свинца) увеличивают прочность (твердость), но уменьшают пластичность латуни. Содержание в латуни свинца (до 4%) облегчает обработку резанием и улучшает антифрикционные свойства. Алюминий, цинк, кремний и никель увеличивают коррозионную стойкость латуни. Добавление в латунь железа, никеля и магния повышает её прочность.
Томпак (фр. tombac, от малайск. tambaga — медь) — латунь с содержанием меди 90—97 %. Обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами, хорошо сваривается со сталью, его применяют для изготовления биметалла сталь-латунь. Благодаря золотистому цвету, томпак используют для изготовления художественных изделий, знаков отличия и фурнитуры.
Двойные деформируемые латуни | |
Марка | Область применения |
---|---|
Л96, Л90 | Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др. |
Л85 | Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др. |
Л80 | Детали машин, приборов теплотехнической и химической аппаратуры, змеевики, сильфоны и др. |
Л70 | Гильзы химической аппаратуры, отдельные штампованные изделия |
Л68 | Большинство штампованных изделий |
Л63 | Гайки, болты, детали автомобилей, конденсаторные трубы |
Л60 | Толстостенные патрубки, гайки, детали машин. |
Многокомпонентные деформируемые латуни | |
Марка | Область применения |
ЛА77-2 | Конденсаторные трубы морских судов |
ЛАЖ60-1-1 | Детали морских судов. |
ЛАН59-3-2 | Детали химической аппаратуры, электромашин, морских судов |
ЛЖМа59-1-1 | Вкладыши подшипников, детали самолетов, морских судов |
ЛН65-5 | Манометрические и конденсаторные трубки |
ЛМц58- 2 | Гайки, болты, арматура, детали машин, советская разменная монета образца 1958 г., номиналом 1-5 копеек. |
ЛМцА57-3-1 | Детали морских и речных судов |
ЛO90-1 | Конденсаторные трубы теплотехнической аппаратуры |
ЛO70-1 | Конденсаторные трубы теплотехнической аппаратуры |
ЛO62-1 | Конденсаторные трубы теплотехнической аппаратуры |
ЛO60-1 | Конденсаторные трубы теплотехнической аппаратуры |
ЛС63-3 | Детали часов, втулки |
ЛС74-3 | Детали часов, втулки |
ЛС64-2 | Полиграфические матрицы |
ЛС60-1 | Гайки, болты, зубчатые колеса, втулки |
ЛС59-1 | Гайки, болты, зубчатые колеса, втулки |
ЛЖС58-1-1 | Детали, изготовляемые резанием |
ЛК80-3 | Коррозионностойкие детали машин |
ЛМш68-0,05 | Конденсаторные трубы |
ЛАНКМц75- 2- 2,5- 0,5- 0,5 | Пружины, манометрические трубы |
Литейные латуни | |
Марка | Область применения |
---|---|
ЛЦ16К4 | Детали арматуры |
ЛЦ23А6ЖЗМц2 | Массивные червячные винты, гайки нажимных винтов |
ЛЦЗОАЗ | Коррозионно-стойкие детали |
ЛЦ40С | Литые детали арматуры, втулки, сепараторы, подшипники |
ЛЦ40МцЗЖ | Детали ответственного назначения, работающие при температуре до 300 °C |
ЛЦ25С2 | Штуцера гидросистемы автомобилей |
Ювелирные сплавы | ||
Вид обработки | Цвет | Наименование сплава |
---|---|---|
литьё | жёлтый | Латунь в гранулах M67/33 |
литьё | зелёный | Латунь в гранулах M60/40 |
литьё | золотистый | Латунь в гранулах M75/25 |
литьё | жёлтый | Латунь в гранулах M90 |
This article uses material from the Wikipedia article "Латунь", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification