Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution 2.5 (User:Moebius1).
Сталь |
---|
Фазы железоуглеродистых сплавов |
Феррит (твердый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой) |
Структуры железоуглеродистых сплавов |
Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит) |
Стали |
Конструкционная сталь (до 0,8 % C) |
Чугуны |
Белый чугун (хрупкий, содержит ледебурит и не содержит графит) |
Сталь (от нем. Stahl)[1] — сплав железа с углеродом (и другими элементами). Содержание углерода в стали от 0,1 до 2,14 %. На данный момент существуют стали с большим содержанием углерода, такие как: zdp-189 ~ 3,0 %, cpm rex 121 ~ 3,4 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.
Учитывая, что в сталь могут быть добавлены легирующие элементы, сталью называется сплав железа с углеродом и легирующими элементами (легированная, высоколегированная сталь), содержащий не менее 45 % железа.
Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения, в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.
Пружины, рессоры машин и упругие элементы приборов характеризуются многообразием форм, размеров, различными условиями работы. Особенность их работы состоит в том, что при больших статических, циклических или ударных нагрузках в них не допускается остаточная деформация. В связи с этим все пружинные сплавы, кроме механических свойств, характерных для всех конструкционных материалов (прочности, пластичности, вязкости, выносливости), должны обладать высоким сопротивлением малым пластическим деформациям. В условиях кратковременного статического нагружения сопротивление малым пластическим деформациям характеризуется пределом упругости, при длительном статическом или циклическом нагружении — релаксационной стойкостью[2].
Существует множество способов классификации сталей, таких как по назначению, по химическому составу, по качеству, по структуре.
По назначению стали делятся на множество категорий, таких как конструкционные стали, коррозионно стойкие (нержавеющие) стали, инструментальные стали, жаропрочные стали, криогенные стали.
По химическому составу стали делятся на углеродистые[3] и легированные[4]; в том числе по содержанию углерода — на низкоуглеродистые (до 0,25 % С), среднеуглеродистые (0,3—0,55 % С) и высокоуглеродистые (0,6—2 % С); легированные стали по содержанию легирующих элементов делятся на низколегированные — до 4 % легирующих элементов, среднелегированные — до 11 % легирующих элементов и высоколегированные — свыше 11 % легирующих элементов.
Стали, в зависимости от способа их получения, содержат разное количество неметаллических включений. Содержание примесей лежит в основе классификации сталей по качеству: обыкновенного качества, качественные, высококачественные и особо высококачественные.
По структуре сталь разделяется на аустенитную, ферритную, мартенситную, бейнитную и перлитную. Если в структуре преобладают две и более фаз, то сталь разделяют на двухфазную и многофазную.
Хромоникельвольфрамовая сталь | 15,5 Вт/(м·К) |
Хромистая сталь | 22,4 Вт/(м·К) |
Молибденовая сталь | 41,9 Вт/(м·К) |
Углеродистая сталь (марка 30) | 50,2 Вт/(м·К) |
Углеродистая сталь (марка 15) | 54,4 Вт/(м·К) |
сталь Ст3 (марка 20) | |
сталь нержавеющая |
сталь для конструкций | 373—412 МПа |
сталь кремнехромомарганцовистая | 1,52 ГПа |
сталь машиностроительная (углеродистая) | 314—785 МПа |
сталь рельсовая | 690—785 МПа |
Суть процесса переработки чугуна на сталь состоит в уменьшении до нужной концентрации содержания углерода и вредных примесей — фосфора и серы, которые делают сталь хрупкой и ломкой. В зависимости от способа окисления углерода существуют различные способы переработки чугуна на сталь: конверторный, мартеновский и электротермический.
Передельный или литейный чугун в расплавленном или твердом виде и железосодержащие изделия, полученные прямым восстановлением (губчатое железо), составляют вместе с металлическими отходами и ломом исходные материалы для производства стали. К этим материалам добавляются некоторые шлакообразующие добавки, такие как известь, плавиковый шпат, раскислители (например, ферромарганец, ферросилиций, алюминий) и различные легирующие элементы. Процессы производства стали делятся на два основных способа, а именно: конвертерный процесс, в котором расплавленный передельный чугун в конвертере рафинируют от примесей, продувая его кислородом, и подовый процесс, для осуществления которого используются мартеновские или электрические печи. Конвертерные процессы не требуют внешнего источника тепла. Они применяются в том случае, когда загрузка состоит главным образом из расплавленного передельного чугуна. Окисление некоторых элементов, присутствующих в чугуне (например, углерода, фосфора, кремния и марганца), обеспечивает достаточно тепла, чтобы удерживать сталь в жидком состоянии и даже переплавить добавленный лом. Эти процессы включают в себя такие, при которых чистый кислород вдувается в расплавленный металл (процессы Линца-Донавица: ЛД или ЛДАС, ОБМ, ОЛП, Калдо и другие), и такие процессы, ныне уже устаревшие, при которых используется воздух, иногда обогащенный кислородом (томасовский и бессемеровский процессы). Подовые процессы, однако, требуют внешнего источника тепла. Они применяются, когда исходным материалом служит твердая шихта (например, отходы или лом, губчатое железо и твердый передельный чугун).
Двумя основными процессами в этой категории являются мартеновский процесс, при котором нагрев осуществляется при сжигании мазута или газа, и сталеплавильные процессы в дуговых или индукционных печах, где нагрев осуществляется электричеством. Для производства некоторых видов стали могут быть последовательно использованы два различных процесса (дуплекс-процесс). Например, процесс плавки может начаться в мартеновской печи, а закончиться в электропечи; или же сталь, расплавленная в электропечи, может быть слита в специальный конвертер, где обезуглероживание завершается путём вдувания кислорода и аргона в жидкую ванну (процесс, используемый, например, для производства коррозионностойкой стали).
Возникло много новых процессов производства сталей специального состава или со специальными свойствами. Эти процессы включают дуговой переплав в вакууме, электронно-лучевую плавку и электрошлаковый переплав. Во всех этих процессах сталь получается из переплавляемого электрода, который при плавлении начинает капать в кристаллизатор. Кристаллизатор может быть изготовлен цельным или его днище может быть отъемным для того, чтобы затвердевшую отливку можно было вынуть снизу. Жидкая сталь, полученная вышеописанными процессами, с дальнейшим рафинированием или без него, сливается в ковш. На этом этапе в неё могут быть добавлены легирующие элементы или раскислители. Процесс также можно провести в вакууме, что обеспечивает снижение содержания газообразных примесей в стали. Стали, полученные этими процессами, подразделяются в соответствии с содержанием в них легирующих элементов на "нелегированные стали" и "легированные стали" (коррозионностойкие стали или другие виды). Далее они подразделяются в соответствии с их индивидуальными свойствами, например, на автоматную сталь, кремнистую электротехническую сталь, быстрорежущую сталь или кремнемарганцовистую сталь. [6]
По этому способу окисления избыток углерода и других примесей чугуна окисляют кислородом, который продувают сквозь расплавленный чугун под давлением в специальных печах — конверторах. Конвертер представляет собой грушевидную стальную печь, футерованную внутри огнеупорным кирпичом. Он может поворачиваться вокруг своей оси. Ёмкость конвертора 50-60 т. Материалом его футеровки служит либо динас (в состав которого входят главным образом SiO2; имеющий кислотные свойства), или доломитная масса (смесь CaO и MgO), которые получают из доломита MgCO3 • CaCO3. Эта масса имеет основные свойства. В зависимости от материала футеровки печи конверторный способ разделяют на два вида: бессемеровский и томасовский.
Бессемеровским способом перерабатывают чугуны, содержащие мало фосфора и серы и богатые кремнием (не менее 2 %). При продувке кислорода сначала окисляется кремний с выделением значительного количества тепла. Вследствие этого начальная температура чугуна примерно с 1300 °C быстро поднимается до 1500—1600° С. Выгорания 1 % Si обусловливает повышение температуры на 200 °C. Около 1500 °C начинается интенсивное выгорание углерода. Вместе с ним интенсивно окисляется и железо, особенно к концу выгорания кремния и углерода:
Образующийся монооксид железа FeO хорошо растворяется в расплавленном чугуне и частично переходит в сталь, а частично реагирует с SiO2 и в виде силиката железа FeSiO3 переходит в шлак:
Фосфор полностью переходит из чугуна в сталь, так P2O5 при избытке SiO2 не может реагировать с основными оксидами, поскольку SiO2 с последними реагирует более энергично. Поэтому фосфористые чугуны перерабатывать в сталь этим способом нельзя.
Все процессы в конверторе идут быстро — в течение 10—20 минут, так как кислород воздуха, продуваемый через чугун, реагирует с соответствующими веществами сразу по всему объёму металла. При продувке воздухом, обогащенным кислородом, процессы ускоряются. Монооксид углерода CO, образующийся при выгорании углерода, пробулькивает вверх, сгорает там, образуя над горловиной конвертора факел светлого пламени, который по мере выгорания углерода уменьшается, а затем совсем исчезает, что и служит признаком окончания процесса. Получаемая при этом сталь содержит значительные количества растворенного монооксида железа FeO, который сильно снижает качество стали. Поэтому перед разливкой сталь надо обязательно раскислить с помощью различных раскислителей — ферросилиция, ферромарганца или алюминия:
Монооксид марганца MnO как основной оксид реагирует с SiO2 и образует силикат марганца MnSiO3, который переходит в шлак. Оксид алюминия как нерастворимое при этих условиях вещество тоже всплывает наверх и переходит в шлак. Несмотря на простоту и высокую продуктивность, бессемеровский способ теперь не слишком распространен, поскольку он имеет ряд существенных недостатков. Так, чугун для бессемеровского способа должен быть с наименьшим содержанием фосфора и серы, что далеко не всегда возможно. При этом способе происходит очень большое выгорание металла, и выход стали составляет лишь 90 % от массы чугуна, а также расходуется много раскислителей. Серьёзным недостатком является невозможность регулирования химического состава стали.
Бессемеровская сталь содержит обычно менее 0,2 % углерода и используется как техническое железо для производства проволоки, болтов, кровельного железа и т. п.
Томасовским способом перерабатывают чугун с большим содержанием фосфора (до 2 % и более). Основное отличие этого способа от бессемеровского заключается в том, что футеровку конвертера делают из оксидов магния и кальция. Кроме того, к чугуну добавляют ещё до 15 % CaO. Вследствие этого шлакообразующие вещества содержат значительный избыток оксидов с основными свойствами.
В этих условиях фосфатный ангидрид P2O5, который возникает при сгорании фосфора, взаимодействует с избытком CaO с образованием фосфата кальция, переходит в шлак:
Реакция горения фосфора является одним из главных источников тепла при этом способе. При сгорании 1 % фосфора температура конвертора поднимается на 150 °C. Сера выделяется в шлак в виде нерастворимого в расплавленной стали сульфида кальция CaS, который образуется в результате взаимодействия растворимого FeS с CaO по реакции:
Все последние процессы происходят так же, как и при бессемеровском способе. Недостатки Томасовского способа такие же, как и бессемеровского. Томасовская сталь также малоуглеродная и используется как техническое железо для производства проволоки, кровельного железа и т. п.
В СССР Томасовский способ применяли для переработки фосфористого чугуна с керченского бурого железняка. Получаемый при этом шлак содержит до 20 % P2O5. Его размалывают и применяют как фосфорное удобрение на кислых почвах.
Мартеновский способ отличается от конверторного тем, что выжигание избытка углерода в чугуне происходит не только за счет кислорода воздуха, но и кислорода оксидов железа, которые добавляются в виде железной руды и ржавого железного лома.
Мартеновская печь состоит из плавильной ванны, перекрытой сводом из огнеупорного кирпича, и особых камер регенераторов для предварительного подогрева воздуха и горючего газа. Регенераторы заполнены насадкой из огнеупорного кирпича. Когда первые два регенератора нагреваются печными газами, горючий газ и воздух вдуваются в печь через раскаленные третий и четвёртый регенераторы. Через некоторое время, когда первые два регенератора нагреваются, поток газов направляют в противоположном направлении и т. д.
Плавильные ванны мощных мартеновских печей имеют длину до 16 м, ширину до 6 м и высоту более 1 м. Вместимость таких ванн достигает 500 т стали. В плавильную ванну загружают железный лом и железную руду. К шихте добавляют также известняк как флюс. Температура печи поддерживается при 1600—1700 °C и выше. Выгорания углерода и примесей чугуна в первый период плавки происходит главным образом за счет избытка кислорода в горючей смеси с теми же реакциями, что и в конверторе, а когда над расплавленным чугуном образуется слой шлака — за счет оксидов железа
Вследствие взаимодействия основных и кислотных оксидов образуются силикаты и фосфаты, которые переходят в шлак. Сера тоже переходит в шлак в виде сульфида кальция:
Мартеновские печи, как и конверторы, работают периодически. После разливки стали печь снова загружают шихтой и т. д. Процесс переработки чугуна в сталь в мартенах происходит относительно медленно в течение 6–7 часов. В отличие от конвертора, в мартенах можно легко регулировать химический состав стали, добавляя к чугуну железный лом и руду в той или иной пропорции. Перед окончанием плавки нагрева печи прекращают, сливают шлак, а затем добавляют раскислители. В мартенах можно получать и легированную сталь. Для этого в конце плавки добавляют к стали соответствующие металлы или сплавы.
Электротермический способ имеет перед мартеновским и особенно конверторным целый ряд преимуществ. Этот способ позволяет получать сталь очень высокого качества и точно регулировать её химический состав. Доступ воздуха в электропечь незначительный, поэтому значительно меньше образуется монооксида железа FeO, загрязняющего сталь и снижающего её свойства. Температура в электропечи — не ниже 1650 °C. Это позволяет проводить плавку стали на сильно основных шлаках (которые трудно плавятся), при которой полнее удаляется фосфор и сера. Кроме того, благодаря очень высокой температуре в электропечах можно легировать сталь тугоплавкими металлами — молибденом и вольфрамом. Но в электропечах расходуется очень много электроэнергии — до 800 кВт·ч на 1 т стали. Поэтому этот способ применяют только для получения высококачественной спецстали.
Электропечи бывают разной ёмкости — от 0,5 до 180 т. Футеровку печи выполняют обычно из периклазо-углеродистого огнеупора, а свод печи из магнезито-хромитового огнеупора. Состав шихты может быть разный. Иногда она состоит на 90 % из железного лома и на 10 % из чугуна, иногда в ней преобладает чугун с добавками в определенной пропорции железной руды и железного лома. К шихте добавляют также известняк или известь как флюс. Химические процессы при выплавке стали в электропечах те же, что и в мартенах.
Свойства сталей зависят от их состава и структуры, которые формируются присутствием и процентным содержанием следующих составляющих.
Углерод — элемент, с увеличением содержания которого в стали увеличивается её твёрдость и прочность, при этом уменьшается пластичность.
Кремний и марганец (в пределах 0,5 … 0,7 %) существенного влияния на свойства стали не оказывают. Эти элементы вводятся в большинство углеродистых и низколегированных марок сталей во время операции раскисления (сначала - ферромарганец, затем - ферросилиций, как дешевые раскисляющие ферросплавы).
Сера является вредной примесью, образует с железом химическое соединение FeS (сернистое железо). Сернистое железо в сталях образует с железом эвтектику с температурой плавления 1258 К, которая обусловливает ломкость материала при обработке давлением с подогревом. Указанная эвтектика при термической обработке расплавляется, в результате чего между зернами теряется связь с образованием трещин. Кроме этого, сера уменьшает пластичность и прочность стали, износостойкость и коррозионную стойкость.
Фосфор также является вредной примесью, т. к. придает стали хладноломкость (хрупкость при пониженных температурах)[7]. Это объясняется тем, что фосфор вызывает сильную внутрикристаллическую ликвацию. Однако существует группа сталей с повышенным содержанием фосфора, так называемые - "автоматные стали", металлоизделия из которых легко поддаются обработке резанием (например, болты, гайки и пр. на револьверных токарных станках-полуавтоматах).
Феррит — железо с объемноцентрированной кристаллической решеткой. Сплавы на его основе обладают мягкой и пластичной микроструктурой.
Цементит — карбид железа, химическое соединение с формулой Fe3C, наоборот, придаёт стали твёрдость. При появлении в структуре заэвтектоидной стали свободного цементита (при С более 0,8 %) пропадает четкая связь между содержанием углерода и комплексом механических свойств: твердостью, ударной вязкостью и прочностью.
Перлит — эвтектоидная (мелкодисперсная механическая смесь) смесь двух фаз — феррита и цементита, содержит 1/8 цементита (точнее - согласно правилу "рычага", если пренебречь растворимостью углерода в феррите при комнатной температуре - 0,8/6,67) и поэтому имеет повышенную прочность и твёрдость по сравнению с ферритом. Поэтому доэвтектоидные стали гораздо более пластичны, чем заэвтектоидные.
Стали содержат до 2,14 % углерода. Фундаментом науки о стали как сплава железа с углеродом является диаграмма состояния сплавов железо-углерод — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры. Для улучшения механических и других характеристик сталей применяют легирование. Главная цель легирования подавляющего большинства сталей — повышение прочности за счет растворения легирующих элементов в феррите и аустените, образования карбидов и увеличения прокаливаемости. Кроме того, легирующие элементы могут повышать устойчивость против коррозии, термостойкость, жаропрочность и др. Такие элементы, как хром, марганец, молибден, вольфрам, ванадий, титан образуют карбиды, а никель, кремний, медь, алюминий карбидов не образуют. Кроме того, легирующие элементы уменьшают критическую скорость охлаждения при закалке, что необходимо учитывать при назначении режимов закалки (температуры нагрева и среды для охлаждения). При значительном количестве легирующих элементов может существенно измениться структура, что приводит к образованию новых структурных классов по сравнению с углеродистыми сталями.
Сталь в исходном состоянии достаточно пластична, её можно обрабатывать путём деформирования: ковать, вальцевать, штамповать. Характерной особенностью стали является её способность существенно изменять свои механические свойства после термической обработки, сущность которой заключается в изменении структуры стали при нагреве, выдержке и охлаждении, согласно специальному режиму. Различают следующие виды термической обработки:
Чем богаче сталь на углерод, тем она твёрже после закалки. Сталь с содержанием углерода до 0,3 % (техническое железо) практически закаливанию не поддается.
Химико-термическая обработка сталей в дополнение к изменениям в структуре стали также приводит к изменению химического состава поверхностного слоя путём добавления различных химических веществ до определенной глубины поверхностного слоя. Эти процедуры требуют использования контролируемых систем нагрева и охлаждения в специальных средах. Среди наиболее распространённых целей, относящихся при использовании этих технологий, является повышение твёрдости поверхности при высокой вязкости сердцевины, уменьшение сил трения, повышения износостойкости, повышения устойчивости к усталости и улучшения коррозионной стойкости. К этим методам относятся:
Марки стали | Термообработка | Твёрдость (сердцевина-поверхность) |
---|---|---|
35 | нормализация | 163—192 HB |
40 | улучшение | 192—228 HB |
45 | нормализация | 179—207 HB |
45 | улучшение | 235—262 HB |
55 | закалка и высокий отпуск | 212—248 HB |
60 | закалка и высокий отпуск | 217—255 HB |
70 | закалка и высокий отпуск | 229—269 HB |
80 | закалка и высокий отпуск | 269—302 HB |
У9 | отжиг | 192 HB |
У9 | закалка | 50—58 HRC |
У10 | отжиг | 197 HB |
У10 | закалка | 62—63 HRC |
40Х | улучшение | 235—262 HB |
40Х | улучшение+закалка токами выс. частоты | 45-50 HRC; 269—302 HB |
40ХН | улучшение | 235—262 HB |
40ХН | улучшение+закалка токами выс. частоты | 48-53 HRC; 269—302 HB |
35ХМ | улучшение | 235—262 HB |
35ХМ | улучшение+закалка токами выс. частоты | 48-53 HRC; 269—302 HB |
35Л | нормализация | 163—207 HB |
40Л | нормализация | 147 HB |
40ГЛ | улучшение | 235—262 HB |
45Л | улучшение | 207—235 HB |
Мировым лидером в производстве стали является Китай, доля которого по итогам I полугодия 2009 года составила 48 %.
По данным Международной ассоциации стали (англ. World Steel Association) производство стали в мире в 2011 году составило (в тыс. тонн)[8]:
Регионы мира | 2011 год |
---|---|
Азия | 954.190 |
Европейский союз (27) | 177.31 |
Северная Америка | 118.927 |
СНГ (6) | 112.434 |
Южная Америка | 48.357 |
Прочая Европа | 37.181 |
Ближний Восток | 20.325 |
Африка | 13.966 |
Океания | 7.248 |
Всего в мире | 1.490.060 |
В 2008 году в мире было произведено 1 млрд 329,7 млн т. стали, что на 1,2 % меньше, чем в 2007 г. Это стало первым сокращением годового объёма производства за последние 11 лет.
По итогам первых шести месяцев 2009 г. производство стали в 66 странах мира, доля которых в мировой сталелитейной отрасли составляет не менее 98 %, сократилось по сравнению с аналогичным периодом предыдущего года на 21,3 % — с 698,2 млн т до 549,3 млн т (статистика World Steel Association).
Китай увеличил производство стали относительно аналогичного периода 2008 года на 1,2 % — до 266,6 млн т. в Индии производство стали возросло на 1,3 % — до 27,6 млн т.
В США производство стали упало на 51,5 %, в Японии — на 40,7 %, в Южной Корее — на 17,3 %, в Германии — на 43,5 %, в Италии — на 42,8 %, во Франции — на 41,5 %, в Великобритании — на 41,8 %, в Бразилии — на 39,5 %, в России — на 30,2 %, на Украине — на 38,8 %.
В июне 2009 г. производство стали в мире составило 99,8 млн т., что на 4,1 % больше, чем в мае 2009 г.
По данным Metal Bulletin’s Top Steelmakers of 2007[9] производство стали по компаниям производителям составило (в млн тонн):
2007 | 2006 | Производитель | Страна | Производство в 2007 году | Производство в 2006 году |
---|---|---|---|---|---|
1 | 1&2 | ArcelorMittal | Люксембург | 116,40 | 117.98 |
2 | 3 | Nippon Steel | Япония | 34,50 | 33,70 |
3 | 4 | JFE Steel | Япония | 33.80 | 31.83 |
4 | 5 | POSCO | Ю. Корея | 32,78 | 31,20 |
5 | 6 | Shanghai Baosteel | Китай | 28,58 | 22,53 |
6 | 51 | Tata Steel | Индия | 26,52 | 23,95 |
7 | 17 | Jiangsu Shagang | Китай | 22,89 | 14,63 |
8 | 9 | Tangshang | Китай | 22,75 | 19,06 |
9 | 7 | US Steel | США | 20,54 | 21,25 |
10 | 18 | Wuhan | Китай | 20.19 | 13.76 |
11 | 8 | Nucor | США | 20,04 | 20,31 |
12 | 11 | Riva | Италия | 17,91 | 18,19 |
13 | 15 | Gerdau Group | Бразилия | 17,90 | 15,57 |
14 | 13 | ThyssenKrupp | Германия | 17,02 | 16,80 |
15 | 12 | Северсталь | Россия | 16,75 | 17,60 |
16 | 14 | Евраз | Россия | 16,30 | 16,10 |
17 | 16 | Anshan | Китай | 16,17 | 15,00 |
18 | 25 | Maanshan | Китай | 14,16 | 10,91 |
19 | 20 | Sail | Индия | 13,87 | 13,50 |
20 | 19 | Sumitomo Metal ind | Япония | 13,50 | 13,32 |
21 | 23 | ММК | Россия | 13,30 | 12,45 |
22 | 21 | Techint | Аргентина | 13,20 | 12,83 |
23 | 27 | Shougang | Китай | 12,85 | 10,55 |
24 | 22 | China Steel Corp | Тайвань | 12,67 | 12,48 |
25 | 24 | Jinan | Китай | 12,12 | 11,24 |
2007 | 2006 | Производитель | Производство в 2010 году |
Производство в 2007 году |
Производство в 2006 году |
---|---|---|---|---|---|
15 | 12 | Северсталь | 11,03 | 16,75 | 17,60 |
16 | 14 | Евраз | 19,96 | 16,30 | 16,10 |
21 | 23 | ММК | 11,37 | 13,30 | 12,45 |
33 | 31 | НЛМК | 9,32 | 9,06 | 9,13 |
48 | 47 | Металлоинвест | 3,27 | 6,43 | 6,28 |
51 | 47 | Мечел | 5,16 | 6,09 | 5,95 |
120 | 120 | ТМК | 2,00 | 2,19 | 2,15 |
Эта статья или раздел описывает ситуацию применительно лишь к одному региону, возможно, нарушая при этом правило о взвешенности изложения. Вы можете помочь Википедии, добавив информацию для других стран и регионов. |
Подавляющая часть стальной продукции подлежит обязательной сертификации. Для простоты в дальнейшем в этом разделе будет упоминаться «прокат», но такие же требования относятся и к поковкам, отливкам, метизам (например, проволока, лента) и проч.
Сертификат качества оформляется предприятием-изготовителем и удостоверяет соответствие продукции действующим нормативам (ГОСТам, ТУ и иным).
Основные нормируемые характеристики:
— сортамент, то есть геометрия проката (размеры, длина, допустимая кривизна и т. п.);
— химический состав стали;
— технические условия (механические свойства, отделка поверхности, для отдельных видов — структура стали и некоторые другие параметры).
Для каких-то видов проката каждая характеристика нормируется отдельным ГОСТом; какие-то ГОСТы объединяют две и даже все три характеристики.
Примеры:
1. Уголок горячекатаный 50х50х5 мм длиной 12,0 м из марки ст3сп-5 нормируется тремя ГОСТами:
— ГОСТ 8509-93 — на размер (50х50х5мм), длину прутков 12,0 м, допустимую кривизну и т. п.
— ГОСТ 380—2005 на химсостав (ст3сп)
— ГОСТ 535—2005 на механические свойства
2. круг горячекатаный 25 мм из марки ст20 нормируется только двумя ГОСТами:
— ГОСТ 2590—2006 — на диаметр 25 мм и допустимую кривизну
— ГОСТ 1050-88 (новая редакция 1050—2013) и на химсостав, и на механические свойства, качество поверхности и т. д.
3. Арматура АIII 28 мм из марки 25Г2С — все параметры регламентируются по ГОСТ 5781-82.
Сертификаты соответствия (в основном) удостоверяют, что тот или иной вид проката, выпускаемого предприятием, отвечает требованиям, не имеющим прямого отношения к прокату как таковому: санитарно-гигиеническим, строительным, особым требованиям, предъявляемым к прокату для нужд атомной, авиационной, судостроительной и некоторых других специальных отраслей промышленности. Выдаются такие Сертификаты специально уполномоченными организациями — в зависимости от назначения проката.
Сталь на Викискладе |
This article uses material from the Wikipedia article "Сталь", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification