Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Fizyka (z stgr. φύσις, physis – „natura”) – nauka przyrodnicza zajmująca się badaniem najbardziej fundamentalnych i uniwersalnych właściwości oraz przemian materii i energii, a także oddziaływań między nimi[1][2]. Do opisu zjawisk fizycznych fizycy używają wielkości fizycznych, wyrażonych za pomocą pojęć matematycznych, takich jak liczba, wektor, tensor. Tworząc hipotezy i teorie fizyki, budują relacje pomiędzy wielkościami fizycznymi.
Z fizyką ściśle wiążą się inne nauki przyrodnicze, szczególnie chemia. Chemicy przyjmują teorie fizyki dotyczące cząsteczek i związków chemicznych (mechanika kwantowa, termodynamika) i za ich pomocą tworzą teorie w ich własnych dziedzinach badań. Fizyka zajmuje szczególne miejsce w naukach przyrodniczych, ponieważ wyjaśnia podstawowe zależności obowiązujące w przyrodzie.
Chwila, od której człowiek zaczął interesować się poznawaniem przyrody, jest trudna do określenia. Najdawniejsze ślady kultur sprzed 5000 lat znalezione w dolinach Nilu, Eufratu i Tygrysu świadczą o prymitywnych próbach wykorzystania natury. Jednak z czasem na podstawie obserwacji ludzkość posiadła sztukę wytwarzania narzędzi, uprawy pól, wytopu metali i sztukę liczenia. Poprzez obserwację powtarzalności zjawisk stworzono kalendarz.
Za pierwsze odkryte prawo fizyki można uznać prawo odbicia światła znane już Euklidesowi w IV w. p.n.e. Pierwszym znanym fizykiem we współczesnym znaczeniu tego słowa był Archimedes z Syrakuz, który w III w. p.n.e. sformułował m.in. prawo dźwigni oraz prawo wyporu. Jednak aż do XIX w. optykę geometryczną oraz mechanikę, w tym statykę i hydrostatykę, zaliczano do matematyki stosowanej, a nie do fizyki[potrzebny przypis].
W starożytności fizyka była traktowana jako część filozofii. Arystoteles dokonał podziału filozofii na fizykę – dział traktujący o zjawiskach przyrodniczych i metafizykę (ontologię oraz epistemologię, czyli nauki dotyczące samej istoty bytu i możliwości jego poznania) oraz etykę i logikę. Fizyka aż do XVI w. była uprawiana, podobnie jak pozostałe działy filozofii, głównie poprzez rozważania teoretyczne. Prace doświadczalne z optyki i z magnetyzmu pojawiały się już w średniowieczu od XIII w. (Witelon, Roger Bacon, Petrus Peregrinus). Jednak dopiero od czasów nowożytnych i XVI w. (Francis Bacon, Galileo Galilei) zaczęła wzrastać rola pomiaru i doświadczenia. Reliktem pozostałym po filozoficznej genezie fizyki jest termin filozofia naturalna w języku angielskim, będący długo synonimem fizyki (w Oksfordzie nadawało się stopnie naukowe nie z fizyki, tylko z filozofii naturalnej)[3].
Obecny zakres zainteresowania fizyki ukształtował się w XIX i na początku XX wieku, również wówczas zarysował się podstawowy podział fizyki na klasyczne działy: mechanikę, optykę, termodynamikę, elektryczność i magnetyzm. Fizyka, odkrywając nowe zjawiska, opisując je, tworząc teorie pozwalające przewidywać nowe efekty, stała się motorem napędowym gwałtownego rozwoju techniki i doprowadziła do rewolucyjnych zmian cywilizacyjnych.
Kultura badań fizycznych różni się od innych nauk tym, że istnieje w niej fundamentalny i powszechnie uznawany podział na teorię i eksperyment[2]. Od początku XX wieku większość fizyków pozostaje specjalistami albo w fizyce teoretycznej, albo w fizyce doświadczalnej. Mało fizyków odnosi sukcesy w obu rodzajach badań. Dla porównania, większość wybitnych teoretyków chemii i biologii z powodzeniem pracuje też eksperymentalnie.
Praca fizyków-teoretyków polega na rozwijaniu teorii, za pomocą których można opisać i interpretować wyniki doświadczeń oraz możliwie dokładnie przewidzieć wyniki przyszłych doświadczeń. Z drugiej strony, fizycy doświadczalni wykonują eksperymenty, żeby zbadać nowe zjawiska i sprawdzić przewidywania teoretyczne. Ważną częścią pracy fizyka doświadczalnego jest też często budowanie własnej aparatury, szczególnie w pionierskich gałęziach fizyki, gdzie potrzebny sprzęt jest niedostępny. Mimo że działania teoretyków wydają się czasem oderwane od prac fizyków doświadczalnych, są w istocie ze sobą ściśle powiązane i od siebie zależne. Postęp w fizyce teoretycznej często zaczyna się od doświadczeń, których stara teoria nie potrafi wyjaśnić – i na odwrót, nowatorskie przewidywania teoretyczne stwarzają potrzebę przeprowadzenia nowych doświadczeń, a czasem również nowych technik doświadczalnych. Każdy fakt doświadczalny wymaga uzasadnienia teoretycznego, tak jak każda teoria musi być potwierdzona doświadczalnie, by stać się paradygmatem. Dlatego np. M-teoria pozostaje tylko spekulacją, ponieważ nie dość, że nie potwierdzono jej eksperymentalnie, to nawet nie wymyślono jeszcze żadnego testu eksperymentalnego, który mógłby ją potwierdzić.
Centralnym elementem eksperymentu jest pomiar dobrze określonej wielkości fizycznej, a warunkiem niezbędnym uzyskania z niego wartościowych informacji – prawidłowy dobór przyrządów pomiarowych oraz metod analizy otrzymanych danych. Obróbka danych często opiera się na statystyce, regułach prawdopodobieństwa oraz odpowiednich metodach numerycznych.
Podobnie fizyka teoretyczna ma własny zestaw metod naukowych, które pozwalają stworzyć adekwatne modele i paradygmaty. Opracowane teorie zazwyczaj korzystają z różnych metod matematyki, analitycznych i syntetycznych. Kluczową rolę w rozważaniach teoretycznych odgrywają hipotezy i proces dedukcji.
W fizyce część teorii jest uznana przez wszystkich fizyków. Każdą z tych teorii uważa się za fundamentalnie prawdziwą w określonym dla niej zakresie[4]. Na przykład mechanika klasyczna precyzyjnie opisuje ruch ciał pod warunkiem, że są one dużo większe od atomów i poruszają się z prędkościami dużo mniejszymi niż prędkość światła w próżni. Niektóre teorie są nadal obszarami badań – zaskakujący aspekt mechaniki klasycznej znany jako chaos przebadano w XX wieku, trzysta lat po jego sformułowaniu przez Newtona, wprowadzając mechanikę statystyczną.
Współczesne badania fizyczne można podzielić na kilka wyraźnych działów, które zajmują się różnymi aspektami świata materialnego. Fizyka fazy skondensowanej dotyczy własności materii i jej związków z własnościami i oddziaływaniami atomów, z których się składa. Fizyka atomów, cząsteczek i zjawisk optycznych opisuje pojedyncze atomy i cząsteczki oraz ich oddziaływania ze światłem. Fizyka cząstek elementarnych (znana też jako fizyka wysokich energii) z kolei bada cząstki submikroskopowe mniejsze od atomów i poszukuje elementarnych cząstek budujących wszystkie inne jednostki materii. Astrofizyka wykorzystuje prawa fizyki, żeby tłumaczyć zjawiska astronomiczne, na przykład zjawiska związane ze Słońcem, Układem Słonecznym oraz Wszechświatem jako całością.
Działy fizyki są ze sobą ściśle powiązane i zasięg stosowania teorii i modeli często wykracza poza prosty podział zaprezentowany powyżej. Przykładowo fizyka materii skondensowanej zajmująca się układami silnie skorelowanych fermionów jest stosowana do efektów obserwowanych w gwiazdach neutronowych, które są podstawową domeną astronomii. Wynika to stąd, że fizyka jako nauka jest spójna i poszczególne modele i teorie opracowywane w poszczególnych działach mają te same podstawy oraz mogą mieć zastosowanie w innych działach. Podstawowe teorie, takie jak mechanika kwantowa, kwantowa teoria pola, elektrodynamika kwantowa, teoria grawitacji, są sformułowane w sposób ogólny i obowiązują w całej fizyce.
Wiele badań łączy fizykę z innym dziedzinami nauki[2]. Dla przykładu, szeroki zakres biofizyki obejmuje wszystkie zagadnienia dotyczące układów biologicznych, w których stosuje się zasady fizyki. W chemii kwantowej z kolei opisuje się i przewiduje zachowania atomów i molekuł na podstawie teorii mechaniki kwantowej.
Dobrze sprecyzowane i powszechnie przyjęte teorie są przedstawiane jako prawa fizyki. Chociaż wszystkie naukowe teorie są w zasadzie tymczasowe i obowiązują tylko w pewnym zakresie, prawa fizyczne zostały wielokrotnie sprawdzone, a ich zakres stosowalności dobrze określony.
Wiele praw fizycznych może być opisana za pomocą relacji odpowiednich wielkości. Zapis matematyczny takich relacji nazywa się równaniem.
Multimedia w Wikimedia Commons |
Cytaty w Wikicytatach |
Podręczniki w Wikibooks |
Definicje słownikowe w Wikisłowniku |
This article uses material from the Wikipedia article "Fizyka", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD