powered by CADENAS

Social Share

Scandium hydride (4856 views - Material Database)

Scandium hydride, also known as scandium–hydrogen alloy, is an alloy made by combining scandium and hydrogen. Hydrogen acts as a hardening agent, preventing dislocations in the scandium atom crystal lattice from sliding past one another. Varying the amount of hydrogen controls qualities such as the hardness of the resulting scandium hydride. Scandium hydride with increased hydrogen content can be made harder than scandium. It can be formed by progressive hydrogenation of scandium foil with hydrogen. In the narrow range of concentrations which make up scandium hydride, mixtures of hydrogen and scandium can form two different structures. At room temperature, the most stable form of scandium is the hexagonal close-packed (HCP) structure α-scandium. It is a fairly soft metallic material that can dissolve a moderate concentration of hydrogen, no more than 0.89 wt% at 22 °C. If scandium hydride contains more than 0.89% hydrogen at room temperature then it transforms into a face-centred cubic (FCC) structure, the δ-phase. It can dissolve considerably more hydrogen, as much as 4.29%, which reflects the upper hydrogen content of scandium hydride. Research indicates the existence of a third phase created under extreme conditions termed the η-phase. This phase can dissolve as much as 6.30% hydrogen. Concentration dependent activation-energies are observed for hydrogen diffusion in scandium metal.
Go to Article

Scandium hydride

Scandium hydride

Scandium hydride, also known as scandium–hydrogen alloy, is an alloy made by combining scandium and hydrogen. Hydrogen acts as a hardening agent, preventing dislocations in the scandium atom crystal lattice from sliding past one another. Varying the amount of hydrogen controls qualities such as the hardness of the resulting scandium hydride. Scandium hydride with increased hydrogen content can be made harder than scandium.

It can be formed by progressive hydrogenation of scandium foil with hydrogen.[1]

In the narrow range of concentrations which make up scandium hydride, mixtures of hydrogen and scandium can form two different structures. At room temperature, the most stable form of scandium is the hexagonal close-packed (HCP) structure α-scandium.[2] It is a fairly soft metallic material that can dissolve a moderate concentration of hydrogen, no more than 0.89 wt% at 22 °C. If scandium hydride contains more than 0.89% hydrogen at room temperature then it transforms into a face-centred cubic (FCC) structure, the δ-phase. It can dissolve considerably more hydrogen, as much as 4.29%, which reflects the upper hydrogen content of scandium hydride.

Research indicates the existence of a third phase created under extreme conditions termed the η-phase. This phase can dissolve as much as 6.30% hydrogen.

Concentration dependent activation-energies are observed for hydrogen diffusion in scandium metal.[3]

  1. ^ Chemistry of d-block elements G. Singh (2007)
  2. ^ Manchester, F. D.; Pitre, J. M. (1997). "The H- SC (Hydrogen- Scandium) system". Journal of Phase Equilibria. 18 (2): 194–205. ISSN 1054-9714. doi:10.1007/BF02665706. 
  3. ^ Weaver, H. (1972). "Nuclear-Magnetic-Resonance Investigation of Proton Motion in Scandium Hydride". Physical Review B. 5 (5): 1663–1667. ISSN 0556-2805. doi:10.1103/PhysRevB.5.1663. 

41xx steelAL-6XNAlGaAlloy 20AlnicoAlumel알루미늄알루미늄 합금알루미늄 청동Aluminium-lithium alloy아말감Arsenical bronzeArsenical copperBell metal베릴륨베릴륨구리Billon (alloy)BirmabrightBismanol비스무트황동Brightray청동Bulat steelCalamine brass주철CelestriumChinese silverChromel크로뮴Chromium hydride코발트Colored goldConstantan구리Copper hydrideCopper–tungstenCorinthian bronzeCrown goldCrucible steelCunife백동Cymbal alloys다마스쿠스 강Devarda's alloy두랄루민Dutch metalElectrical steel호박금Elektron (alloy)ElinvarFernicoFerroalloy페로세륨FerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumField's metalFlorentine bronzeGalfenolGalinstan갈륨Gilding metal유리GlucydurGuanín (bronze)GunmetalHaynes InternationalHepatizonHiduminiumHigh-speed steelHigh-strength low-alloy steelHydronaliumInconel인듐InvarIron–hydrogen alloyItalmaKanthal (alloy)Kovar리튬Magnalium마그네슘Magnox (alloy)MangalloyManganinMaraging steelMarine grade stainlessMartensitic stainless steelMegalliumMelchior (alloy)머큐리MischmetalMolybdochalkosMonelMu-metalMuntz metalMushet steel니크롬니켈Nickel hydride양은Nickel titaniumNicrosilNisil노르딕 골드Ormolu퍼멀로이Phosphor bronze선철Pinchbeck (alloy)플라스틱Plexiglas플루토늄Plutonium–gallium alloy칼륨Pseudo palladiumReynolds 531Rhodite로듐Rose's metal사마륨Sanicro 28스칸듐ShakudōSilver steel나트륨나크땜납Speculum metalSpiegeleisenSpring steelStaballoy스테인리스강강철StelliteStructural steelSupermalloySurgical stainless steelTerfenol-DTerne주석 (원소)타이타늄TombacTool steelTumbagaType metal우라늄VitalliumWeathering steel우드 합금Wootz steelY alloyZeron 100아연지르코늄Samarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichi스털링 실버Tibetan silverTitanium Beta CTitanium alloyTitanium hydrideGum metalTitanium goldTitanium nitride배빗메탈Britannia metal퓨터Queen's metalWhite metalUranium hydrideZamakZirconium hydride수소헬륨붕소질소산소플루오린메테인Mezzanine원자

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification