powered by CADENAS

Social Share

Marine grade stainless (10156 views - Material Database)

Marine grade stainless alloys typically contain molybdenum to resist the corrosive effects of NaCl or salt in seawater. Concentrations of salt in seawater can vary, and splash zones can cause concentrations to increase dramatically from the spray and evaporation. SAE 316 stainless steel is a molybdenum-alloyed steel and is the second most common austenite stainless steel (after grade 304). It is the preferred steel for use in marine environments because of its greater resistance to pitting corrosion than other grades of steel without molybdenum. The fact that it is negligibly responsive to magnetic fields means that it can be used in applications where a non-magnetic metal is required. A fully austenitic grade (super austenitic, low magnetism), even when cold worked, is Nitronic 50. An example of a non-molybdenum grade performing well in seawater is Nitronic 60. "The pitting resistance of NITRONIC 60 in sea water is actually better than Type 316 due to the high levels of Si and N. The N also increases the yield strength..". While 316 is not completely rust-proof, the alloy is more corrosion-resistant than other common stainless steels. Surgical steel is made from subtypes of 316 stainless steel. In addition to molybdenum, 316 also contains a number of other elements in varying concentrations (see table below). Non-standard grades include 316H which has a "high" carbon content of greater than 0.04% giving it a high creep rupture strength at high temperatures, 316L(Hi)N which is an extra-high nitrogen grade (0.16-0.30%), 316Ti which is stabilized by titanium, 316Cb which is stabilized by niobium, 316L-SCQ which is a high-purity version of 316L, and 316LS which specially adapted for surgical implants.
Go to Article

Marine grade stainless

Marine grade stainless

Marine grade stainless

Marine grade stainless alloys typically contain molybdenum to resist the corrosive effects of NaCl or salt in seawater. Concentrations of salt in seawater can vary, and splash zones can cause concentrations to increase dramatically from the spray and evaporation. SAE 316 stainless steel is a molybdenum-alloyed steel and is the second most common austenite stainless steel (after grade 304). It is the preferred steel for use in marine environments because of its greater resistance to pitting corrosion than other grades of steel without molybdenum.[1] The fact that it is negligibly responsive to magnetic fields means that it can be used in applications where a non-magnetic metal is required. A fully austenitic grade (super austenitic, low magnetism), even when cold worked, is Nitronic 50. [2] An example of a non-molybdenum grade performing well in seawater is Nitronic 60. "The pitting resistance of NITRONIC 60 in sea water is actually better than Type 316 due to the high levels of Si and N. The N also increases the yield strength..". [3]

While 316 is not completely rust-proof, the alloy is more corrosion-resistant than other common stainless steels. Surgical steel is made from subtypes of 316 stainless steel. In addition to molybdenum, 316 also contains a number of other elements in varying concentrations (see table below).

Stainless steel designations[4]
SAE  % Cr  % Ni  % C  % Mn  % Si  % P  % S  % N  % Mo Description and uses
316 16–18 10–14 0.08 2 0.75 0.045 0.03 0.10 2.0–3.0 General grade for food processing, chemical storage and transport, textile dying equipment, cladding of nuclear fuel, and oil refining equipment as well as some medical implants.
316L 16–18 10–14 0.03 2 0.75 0.045 0.03 0.10 2.0–3.0 Low-carbon grade for handling paper pulp as well as the production of rayon, rubber, textile bleaches, and high-temperature industrial equipment. This is the preferred grade for medical implants as it is resistant to sensitization (grain boundary carbide precipitation).
316F 16–18 10–14 0.08 2 1 0.2 0.10 min - 1.75–2.5 Free-machining grade with reduced molybdenum and correspondingly increased phosphorus and sulfur for automatic machine screw parts as well as surgical implants and pharmaceutical processing equipment.
316N 16–18 10–14 0.08 2 0.75 0.045 0.03 0.10–0.16 2.0–3.0 High-nitrogen grade with increased resistance to pitting and to corrosion in crevices. Used for chemical handling accessories.

Non-standard grades include 316H which has a "high" carbon content of greater than 0.04% giving it a high creep rupture strength at high temperatures, 316L(Hi)N which is an extra-high nitrogen grade (0.16-0.30%), 316Ti which is stabilized by titanium, 316Cb which is stabilized by niobium, 316L-SCQ which is a high-purity version of 316L, and 316LS which specially adapted for surgical implants.[5]

See also


41xx steelAL-6XNAlGaAlloy 20Alnico알루미늄알루미늄 합금알루미늄 청동Aluminium-lithium alloyArsenical bronzeArsenical copperBell metal베릴륨베릴륨구리Billon (alloy)BirmabrightBismanol비스무트황동청동Bulat steelCalamine brass주철CelestriumChinese silver크로뮴Chromium hydride코발트Colored goldConstantan구리Copper hydrideCopper–tungstenCorinthian bronzeCrown goldCrucible steelCunife백동Cymbal alloys다마스쿠스 강Devarda's alloy두랄루민Dutch metalElectrical steel호박금ElinvarFernicoFerroalloy페로세륨FerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumField's metalFlorentine bronzeGalfenolGalinstan갈륨Gilding metal유리GlucydurGuanín (bronze)GunmetalHepatizonHiduminiumHigh-speed steelHigh-strength low-alloy steelHydronalium인듐InvarIron–hydrogen alloyItalmaKanthal (alloy)KovarMagnalium마그네슘MangalloyManganinMaraging steelMegalliumMelchior (alloy)머큐리MolybdochalkosMuntz metalMushet steel니크롬니켈양은노르딕 골드OrmoluPhosphor bronze선철Pinchbeck (alloy)플라스틱Plexiglas플루토늄칼륨Reynolds 531Rhodite로듐Rose's metal사마륨스칸듐Shakudō나트륨Speculum metalSpiegeleisenSpring steelStaballoy스테인리스강강철StelliteStructural steel주석 (원소)타이타늄TombacTumbaga우라늄Vitallium우드 합금Y alloy아연지르코늄Martensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelTool steelWeathering steelWootz steel땜납TerneType metalElektron (alloy)아말감Magnox (alloy)AlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNickel titaniumMu-metal퍼멀로이SupermalloyNickel hydridePlutonium–gallium alloy나크Mischmetal리튬Terfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichi스털링 실버Tibetan silverTitanium Beta CTitanium alloyTitanium hydrideGum metalTitanium goldTitanium nitride배빗메탈Britannia metal퓨터Queen's metalWhite metalUranium hydrideZamakZirconium hydride수소헬륨붕소질소산소플루오린메테인Mezzanine원자

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification