powered by CADENAS

Social Share

Kovar (12855 views - Material Database)

Kovar (trademark of CRS Holdings, inc., Delaware) is a nickel–cobalt ferrous alloy compositionally identical to Fernico 1, designed to have substantially the same thermal expansion characteristics as borosilicate glass (~5 × 10−6 /K between 30 and 200 °C, to ~10 × 10−6 /K at 800 °C) in order to allow a tight mechanical joint between the two materials over a range of temperatures. It finds application in electroplated conductors entering glass envelopes of electronic parts such as vacuum tubes (valves), X-ray and microwave tubes and some lightbulbs. Kovar was invented to meet the need for a reliable glass-to-metal seal, which is required in electronic devices such as light bulbs, vacuum tubes, cathode ray tubes, and in vacuum systems in chemistry and other scientific research. Most metals cannot seal to glass because their coefficient of thermal expansion is not the same as glass, so as the joint cools after fabrication the stresses due to the differential expansion rates of the glass and metal cause the joint to crack. Kovar not only has thermal expansion similar to glass, but its nonlinear thermal expansion curve can often be made to match a glass, thus allowing the joint to tolerate a wide temperature range. Chemically, it bonds to glass via the intermediate oxide layer of nickel(II) oxide and cobalt(II) oxide; the proportion of iron oxide is low due to its reduction with cobalt. The bond strength is highly dependent on the oxide layer thickness and character.[4][6] The presence of cobalt makes the oxide layer easier to melt and dissolve in the molten glass. A grey, grey-blue or grey-brown color indicates a good seal. A metallic color indicates lack of oxide, while black color indicates overly oxidized metal, in both cases leading to a weak joint.[2] The name Kovar is often used as a general term for Fe–Ni alloys with these particular thermal expansion properties. Note the related particular Fe–Ni alloy Invar which exhibits minimum thermal expansion.
Go to Article

Kovar

Kovar

Kovar

Kovar (trademark of CRS Holdings, inc., Delaware[1]) is a nickelcobalt ferrous alloy compositionally identical to Fernico 1, designed to have substantially the same thermal expansion characteristics as borosilicate glass (~5 × 10−6 /K between 30 and 200 °C, to ~10 × 10−6 /K at 800 °C) in order to allow a tight mechanical joint between the two materials over a range of temperatures. It finds application in electroplated conductors entering glass envelopes of electronic parts such as vacuum tubes (valves), X-ray and microwave tubes and some lightbulbs.

Kovar was invented to meet the need for a reliable glass-to-metal seal, which is required in electronic devices such as light bulbs, vacuum tubes, cathode ray tubes, and in vacuum systems in chemistry and other scientific research. Most metals cannot seal to glass because their coefficient of thermal expansion is not the same as glass, so as the joint cools after fabrication the stresses due to the differential expansion rates of the glass and metal cause the joint to crack.

Kovar not only has thermal expansion similar to glass, but its nonlinear thermal expansion curve can often be made to match a glass, thus allowing the joint to tolerate a wide temperature range. Chemically, it bonds to glass via the intermediate oxide layer of nickel(II) oxide and cobalt(II) oxide; the proportion of iron oxide is low due to its reduction with cobalt. The bond strength is highly dependent on the oxide layer thickness and character.[4][6] The presence of cobalt makes the oxide layer easier to melt and dissolve in the molten glass. A grey, grey-blue or grey-brown color indicates a good seal. A metallic color indicates lack of oxide, while black color indicates overly oxidized metal, in both cases leading to a weak joint.[2]

The name Kovar is often used as a general term for Fe–Ni alloys with these particular thermal expansion properties. Note the related particular Fe–Ni alloy Invar which exhibits minimum thermal expansion.

Typical composition

Given in percentages of weight.

Fe Ni Co C Si Mn
balance 29% 17% < 0.01% 0.2% 0.3%

Properties

Property sintered HIPed
Density g /cm3 8.0 8.35
Hardness / HV1 160 150
Youngs Modulus / GPa 138 138
reduction of area at fracture / % 30 30
yield strength / MPa 270 270
thermal conductivity / W/K∙m 17
Curie Temperature / °C 435
electrical resistivity Ω mm2 / m 0.49
specific heat J/g∙K 0.46
thermal expansion coefficient/10−6 K−1 (25 – 200 °C) 5.5
(25–300 °C) 5.1
(25–400 °C) 4.9
(25–450 °C) 5.3
(25–500 °C) 6.2
  1. ^ USPTO United States Patent and Trademark Office (1993). "Trademark Assignment Abstract". Retrieved 18 June 2014. 

AlGaAlnico알루미늄알루미늄 합금알루미늄 청동Aluminium-lithium alloyArsenical bronzeArsenical copperBell metal베릴륨베릴륨구리Billon (alloy)BirmabrightBismanol비스무트황동청동Calamine brass주철Chinese silver크로뮴Chromium hydride코발트Colored goldConstantan구리Copper hydrideCopper–tungstenCorinthian bronzeCrown goldCunife백동Cymbal alloysDevarda's alloy두랄루민Dutch metal호박금ElinvarFernicoFerroalloy페로세륨FerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumField's metalFlorentine bronzeGalfenolGalinstan갈륨Gilding metal유리GlucydurGuanín (bronze)GunmetalHepatizonHiduminiumHydronalium인듐InvarIron–hydrogen alloyItalmaKanthal (alloy)Magnalium마그네슘ManganinMegalliumMelchior (alloy)머큐리MolybdochalkosMuntz metal니크롬니켈양은노르딕 골드OrmoluPhosphor bronze선철Pinchbeck (alloy)플라스틱Plexiglas플루토늄칼륨Rhodite로듐Rose's metal사마륨스칸듐Shakudō나트륨Speculum metal스테인리스강강철StelliteStructural steel주석 (원소)타이타늄TombacTumbaga우라늄Vitallium우드 합금Y alloy아연지르코늄StaballoyBulat steelCrucible steel41xx steel다마스쿠스 강MangalloyHigh-speed steelMushet steelMaraging steelHigh-strength low-alloy steelReynolds 531Electrical steelSpring steelAL-6XNCelestriumAlloy 20Marine grade stainlessMartensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelTool steelWeathering steelWootz steel땜납TerneType metalElektron (alloy)아말감Magnox (alloy)AlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNickel titaniumMu-metal퍼멀로이SupermalloyNickel hydridePlutonium–gallium alloy나크Mischmetal리튬Terfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichi스털링 실버Tibetan silverTitanium Beta CTitanium alloyTitanium hydrideGum metalTitanium goldTitanium nitride배빗메탈Britannia metal퓨터Queen's metalWhite metalUranium hydrideZamakZirconium hydride수소헬륨붕소질소산소플루오린메테인Mezzanine원자

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification