powered by CADENAS

Social Share

Galinstan (12053 views - Material Database)

Galinstan is a commercial liquid metal alloy whose composition is taken from a family of eutectic alloys mainly consisting of gallium, indium, and tin. Such eutectic alloys are liquids at room temperature, typically melting at −19 °C (−2 °F). Due to the low toxicity and low reactivity of its component metals, Galinstan finds use as a replacement for many applications that previously employed the toxic liquid mercury or the reactive NaK (sodium–potassium alloy). An example of a typical eutectic composition is 68 wt% Ga, 22 wt% In and 10 wt% Sn, though it varies between 62 wt% and 95 wt% Ga, 5 wt% and 22 wt% In, 0 wt% and 16 wt% Sn, while keeping eutectic ability. The marketing name is a portmanteau of gallium, indium, and stannum (Latin for "tin"). Galinstan is a registered trademark of the German company Geratherm Medical AG. The exact composition of Galinstan is not publicly known.
Go to Article

Galinstan

Galinstan

Galinstan is a commercial liquid metal alloy whose composition is taken from a family of eutectic alloys mainly consisting of gallium, indium, and tin. Such eutectic alloys are liquids at room temperature, typically melting at −19 °C (−2 °F).[1] Due to the low toxicity and low reactivity of its component metals, Galinstan finds use as a replacement for many applications that previously employed the toxic liquid mercury or the reactive NaK (sodiumpotassium alloy). An example of a typical eutectic composition is 68 wt% Ga, 22 wt% In and 10 wt% Sn, though it varies between 62 wt% and 95 wt% Ga, 5 wt% and 22 wt% In, 0 wt% and 16 wt% Sn, while keeping eutectic ability. The marketing name is a portmanteau of gallium, indium, and stannum (Latin for "tin"). Galinstan is a registered trademark of the German company Geratherm Medical AG. The exact composition of Galinstan is not publicly known.

Physical properties

Galinstan tends to wet and adhere to many materials, including glass, which limits its use compared to mercury. Galinstan is commercially used as a mercury replacement in thermometers due to its nontoxic properties, but the inner tube must be coated with gallium oxide to prevent the alloy from wetting the glass surface.

Galinstan may be used as a thermal interface for computer hardware cooling solutions, though its cost and aggressivity (it corrodes many other metals such as aluminium by dissolving them) are major obstacles for widespread use. It is also electrically conductive, and thus needs to be applied more carefully than regular insulating compounds.

Galinstan has higher reflectivity and lower density than mercury; it is investigated as a replacement for mercury in liquid mirror telescopes for astronomy. It is difficult to use for cooling fission-based nuclear reactors, because indium has a high absorption cross section for thermal neutrons, efficiently absorbing them and inhibiting the fission reaction. Conversely, it is being investigated as a possible coolant for fusion reactors. Unlike other liquid metals used in this application, such as lithium and mercury, the nonreactivity makes Galinstan a safer material to use.[5]

Melting-point controversy

The melting point of Galinstan has been a source of much debate.[by whom?] Many commercially available gallium, indium and tin eutectic alloys are advertised with a melting point of about +11 °C, which is significantly higher than the −19 °C featured by Galinstan. The official MSDS (material safety data sheet) mentions only that Galinstan is an "eutectic mixture of the metal components gallium, indium and tin" with no further explanation provided. Additionally, a US patent to Geraberger Thermometerwerk GmbH[6] describes various related eutectic alloys and mentions that they may contain up to 2 wt% of antimony (Sb) to increase oxidation resistance and up to 2 wt% of bismuth (Bi) to improve fluidity. The resulting eutectic alloy is said to contain 68 wt% to 69 wt% Ga, 21 wt% to 22 wt% In, and 9.5 wt% to 10.5 wt% Sn, with small addition of Sb and Bi and an impurity level less than 0.001 wt%. The resulting material is noted to have a melting point of −19.5 °C and vaporisation point of above 1800 °C.

See also


AlGaAlnico알루미늄알루미늄 합금알루미늄 청동Aluminium-lithium alloyArsenical bronzeArsenical copperBell metal베릴륨베릴륨구리Billon (alloy)BirmabrightBismanol비스무트황동청동Calamine brassChinese silver크로뮴Chromium hydride코발트Constantan구리Copper hydrideCopper–tungstenCorinthian bronzeCunife백동Cymbal alloysDevarda's alloy두랄루민Dutch metal호박금Florentine bronzeGalfenol갈륨Gilding metal유리GlucydurGuanín (bronze)GunmetalHepatizonHiduminiumHydronalium인듐ItalmaMagnalium마그네슘ManganinMegalliumMelchior (alloy)머큐리MolybdochalkosMuntz metal니크롬니켈양은노르딕 골드OrmoluPhosphor bronzePinchbeck (alloy)플라스틱Plexiglas플루토늄칼륨로듐Rose's metal사마륨스칸듐Shakudō나트륨Speculum metal스테인리스강강철StelliteStructural steel주석 (원소)타이타늄TombacTumbaga우라늄Vitallium우드 합금Y alloy아연지르코늄Colored goldRhoditeCrown goldElinvarField's metalFernicoFerroalloy페로세륨FerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumInvar주철Iron–hydrogen alloy선철Kanthal (alloy)KovarStaballoySpiegeleisenBulat steelCrucible steel41xx steel다마스쿠스 강MangalloyHigh-speed steelMushet steelMaraging steelHigh-strength low-alloy steelReynolds 531Electrical steelSpring steelAL-6XNCelestriumAlloy 20Marine grade stainlessMartensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelTool steelWeathering steelWootz steel땜납TerneType metalElektron (alloy)아말감Magnox (alloy)AlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNickel titaniumMu-metal퍼멀로이SupermalloyNickel hydridePlutonium–gallium alloy나크Mischmetal리튬Terfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichi스털링 실버Tibetan silverTitanium Beta CTitanium alloyTitanium hydrideGum metalTitanium goldTitanium nitride배빗메탈Britannia metal퓨터Queen's metalWhite metalUranium hydrideZamakZirconium hydride수소헬륨붕소질소산소플루오린메테인Mezzanine원자

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification