powered by CADENAS

Social Share

Tumbaga (10495 views - Material Database)

Tumbaga is the name for a non-specific alloy of gold and copper given by Spanish Conquistadors to metals composed of these elements found in widespread use in pre-Columbian Mesoamerica and South America.
Go to Article

Tumbaga

Tumbaga

Tumbaga is the name for a non-specific alloy of gold and copper given by Spanish Conquistadors to metals composed of these elements found in widespread use in pre-Columbian Mesoamerica and South America.

Composition and properties

Tumbaga is an alloy composed mostly of gold and copper. It has a significantly lower melting point than gold or copper alone. It is harder than copper, but maintains malleability after being pounded.

Tumbaga can be treated with a simple acid, like citric acid, to dissolve copper off the surface. What remains is a shiny layer of nearly pure gold on top of a harder, more durable copper-gold alloy sheet. This process is referred to as depletion gilding.

Use and function

Tumbaga was widely used by the pre-Columbian cultures of Central America to make religious objects. Like most gold alloys, tumbaga was versatile and could be cast, drawn, hammered, gilded, soldered, welded, plated, hardened, annealed, polished, engraved, embossed, and inlaid.

The proportion of gold to copper in artifacts varies widely; items have been found with as much as 97% gold while others instead contain 97% copper. Some tumbaga has also been found to be composed of metals besides gold and copper, up to 18% of the total mass of the tumbaga.

Tumbaga objects were often made using a combination of the lost wax technique and depletion gilding. An alloy of varying proportions of copper, silver, and gold (typically in a percentage ratio of 80:15:5) was cast. After removal it was burned, turning surface copper into copper oxide, which was then mechanically removed[clarification needed] The object was then placed in an oxidizing solution likely composed of sodium chloride (salt) and ferric sulfate. This dissolved the silver from the surface leaving only gold. When viewed through a microscope voids appear where the copper and silver had been.

The "Tumbaga" Wreck

In 1992, approximately 200 silver "tumbaga" bars were recovered in wreckage off Grand Bahama Island. They were composed of mainly silver, copper, and gold plundered by the Spaniards during the conquests of Cortés and hastily melted into bars of tumbaga for transport across the Atlantic. Such bars were typically melted back into their constituent metals in Spain.[1]

Modern uses

The use of a nanoetched tumbaga alloy was suggested as a way to increase capacity on Li-ion batteries. This would have confined copper (needed for active material binding) to small islands and thereby limited dendrite formation. Unlike most Li-ion batteries, the cells made using this technology can be discharged below 2V safely and even down to 0V; however they need an extensive induction reconditioning process using central field coils to restore full capacity. An additional modification suggested by the classified US patent was to use a highly unstable viologen-based liquid electrolyte (similar to electrochromics) to optimize long term storage at zero C 39% SOC and extended cycle life to 1000+ charges.[citation needed]

  1. ^ The"Tumbaga" Saga: Treasure of the Conquistadors 1st ed. 2010

Alnico알루미늄알루미늄 합금알루미늄 청동Aluminium-lithium alloyArsenical bronzeArsenical copperBell metal베릴륨베릴륨구리Billon (alloy)BirmabrightBismanol비스무트황동청동Calamine brassChinese silver크로뮴Chromium hydride코발트Constantan구리Copper hydrideCopper–tungstenCorinthian bronzeCunife백동Cymbal alloysDevarda's alloy두랄루민Dutch metal호박금Florentine bronze갈륨Gilding metal유리GlucydurGuanín (bronze)GunmetalHepatizonHiduminiumHydronalium인듐ItalmaMagnalium마그네슘ManganinMegalliumMelchior (alloy)머큐리MolybdochalkosMuntz metal니크롬니켈양은노르딕 골드OrmoluPhosphor bronzePinchbeck (alloy)플라스틱Plexiglas플루토늄칼륨로듐Rose's metal사마륨스칸듐Shakudō나트륨Speculum metal스테인리스강강철StelliteStructural steel주석 (원소)타이타늄Tombac우라늄Vitallium우드 합금Y alloy아연지르코늄AlGaGalfenolGalinstanColored goldRhoditeCrown goldElinvarField's metalFernicoFerroalloy페로세륨FerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumInvar주철Iron–hydrogen alloy선철Kanthal (alloy)KovarStaballoyBulat steelCrucible steel41xx steel다마스쿠스 강MangalloyHigh-speed steelMushet steelMaraging steelHigh-strength low-alloy steelReynolds 531Electrical steelSpring steelAL-6XNCelestriumAlloy 20Marine grade stainlessMartensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelTool steelWeathering steelWootz steel땜납TerneType metalElektron (alloy)아말감Magnox (alloy)AlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNickel titaniumMu-metal퍼멀로이SupermalloyNickel hydridePlutonium–gallium alloy나크Mischmetal리튬Terfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichi스털링 실버Tibetan silverTitanium Beta CTitanium alloyTitanium hydrideGum metalTitanium goldTitanium nitride배빗메탈Britannia metal퓨터Queen's metalWhite metalUranium hydrideZamakZirconium hydride수소헬륨붕소질소산소플루오린메테인Mezzanine원자

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification