powered by CADENAS

Social Share

Devarda's alloy (11344 views - Material Database)

Devarda's alloy (CAS # 8049-11-4), is an alloy of aluminium (44% – 46%), copper (49% – 51%) and zinc (4% – 6%). Devarda's alloy is used as reducing agent in analytical chemistry for the determination of nitrates after their reduction to ammonia under alkaline conditions. It owes its name to the Italian chemist Arturo Devarda (1859–1944), who synthesised it at the end of the 19th century to develop a new method to analyze nitrate in Chile saltpeter. It was often used in the quantitative or qualitative analysis of nitrates in agriculture and soil science before the development of ion chromatography, the predominant analysis method largely adopted worldwide today.
Go to Article

Devarda's alloy

Devarda's alloy

Devarda's alloy
Identifiers
ChemSpider
  • none
ECHA InfoCard 100.209.703
UNII
Properties
Density 5,79 g·cm−3[1]
Melting point 490 to 560 °C (914 to 1,040 °F; 763 to 833 K) [1]
Boiling point 906 °C (1,663 °F; 1,179 K)[1]
insoluble [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Devarda's alloy (CAS # 8049-11-4), is an alloy of aluminium (44% – 46%), copper (49% – 51%) and zinc (4% – 6%).

Devarda's alloy is used as reducing agent in analytical chemistry for the determination of nitrates after their reduction to ammonia under alkaline conditions. It owes its name to the Italian chemist Arturo Devarda (1859–1944), who synthesised it at the end of the 19th century to develop a new method to analyze nitrate in Chile saltpeter.[2][3][4]

It was often used in the quantitative or qualitative analysis of nitrates in agriculture and soil science before the development of ion chromatography, the predominant analysis method largely adopted worldwide today.[5] [6]

General mechanism

When a solution of nitrate ions is mixed with aqueous sodium hydroxide, adding Devarda's alloy and heating the mixture gently, liberates ammonia gas. After conversion under the form of ammonia, the total nitrogen is then determined by Kjeldahl method.[7]

The reduction of nitrate by the Devarda's alloy is given by the following equation:

3 NO
3
+ 8 Al + 5 OH
+ 18 H
2
O
→ 3 NH
3
+ 8 [Al(OH)
4
]

Distinction between NO3 and NO2 with spot tests

To distinguish between nitrate and nitrite dilute HCl must be added to the nitrate. The Brown Ring Test can also be used.

Similarity with the Marsh test

Devarda's alloy is a reducing agent that was commonly used in wet analytical chemistry to produce so-called nascent hydrogen under alkaline conditions in situ. In the Marsh test, used for arsenic determination, hydrogen is generated by contacting zinc powder with hydrochloric acid. So, hydrogen can be conveniently produced at low or high pH, according to the volatily of the species to be detected. Acid conditions in the Marsh test promote the fast escape of the arsine gas (AsH3), while in hyperalkaline solution, the degassing of the reduced ammonia (NH3) is greatly facilitated.

Long-debated question of the nascent hydrogen

Since the mid-19th century the existence of true nascent hydrogen has repeatedly been challenged. It was assumed by the supporters of this theory that, before two hydrogen atoms can recombine into a more stable H2 molecule, the labile H· free radicals are more reactive than molecular H2, a relatively weak reductant in the absence of a metal catalyst. Nascent hydrogen was supposed to be responsible for the reduction of arsenate or nitrate in arsine or ammonia respectively. Nowadays, isotopic evidence[8] has closed the nascent hydrogen debate, presently considered to be a Gedanken artifact of romanticism.[9][10][11]

See also


Alnico알루미늄알루미늄 합금알루미늄 청동Aluminium-lithium alloyArsenical bronzeArsenical copperBell metal베릴륨베릴륨구리Billon (alloy)BirmabrightBismanol비스무트황동청동Calamine brassChinese silver크로뮴Chromium hydride코발트Constantan구리Copper hydrideCopper–tungstenCorinthian bronzeCunife백동Cymbal alloys두랄루민Dutch metalFlorentine bronze갈륨Gilding metal유리GlucydurGuanín (bronze)GunmetalHiduminiumHydronalium인듐ItalmaMagnalium마그네슘Megallium머큐리Muntz metal니크롬니켈OrmoluPhosphor bronzePinchbeck (alloy)플라스틱Plexiglas플루토늄칼륨로듐Rose's metal사마륨스칸듐나트륨Speculum metal스테인리스강강철StelliteStructural steel주석 (원소)타이타늄Tombac우라늄Vitallium우드 합금Y alloy아연지르코늄호박금HepatizonManganinMelchior (alloy)양은Molybdochalkos노르딕 골드ShakudōTumbagaAlGaGalfenolGalinstanColored goldRhoditeCrown goldElinvarField's metalFernicoFerroalloy페로세륨FerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumInvar주철Iron–hydrogen alloy선철Kanthal (alloy)KovarStaballoySpiegeleisenBulat steelCrucible steel41xx steel다마스쿠스 강MangalloyHigh-speed steelMushet steelMaraging steelHigh-strength low-alloy steelReynolds 531Electrical steelSpring steelAL-6XNCelestriumAlloy 20Marine grade stainlessMartensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelTool steelWeathering steelWootz steel땜납TerneType metalElektron (alloy)아말감Magnox (alloy)AlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNickel titaniumMu-metal퍼멀로이SupermalloyNickel hydridePlutonium–gallium alloy나크Mischmetal리튬Terfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichi스털링 실버Tibetan silverTitanium Beta CTitanium alloyTitanium hydrideGum metalTitanium goldTitanium nitride배빗메탈Britannia metal퓨터Queen's metalWhite metalUranium hydrideZamakZirconium hydride수소헬륨붕소질소산소플루오린메테인Mezzanine원자

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification