powered by CADENAS

Social Share

Vitallium (15972 views - Material Database)

Vitallium is a trademark for an alloy of 65% cobalt, 30% chromium, 5% molybdenum, and other substances. The alloy is used in dentistry and artificial joints, because of its resistance to corrosion. It is also used for components of turbochargers because of its thermal resistance. Vitallium was developed by Albert W. Merrick for the Austenal Laboratories in 1932. In 2016 Norman Sharp, a 91 year old British man, was recognised as having the world's oldest hip replacement implants. The two vitallium implants were implanted in November 1948 at the Royal National Orthopaedic Hospital, under the newly formed NHS. The 67 year old implants had such an unusually long life, partly because they had not required the typical replacement of such implants, but also because of Mr Sharp's young age of 23 when they were implanted, owing to a childhood case of septic arthritis. For high-temperature use in engines, particularly turbochargers, the first alloy used was Haynes Stellite Nº 21, similar to Vitallium. This was suggested by the British engineer, and denture wearer, Sam Heron during WWII. Although the characteristics of the material obviously suggested itself for making turbocharger blades, it was thought impossible to cast it to the precision needed. Heron demonstrated that it could be, by showing his Vitallium dentures.
Go to Article

Vitallium

Vitallium

Vitallium is a trademark for an alloy of 65% cobalt, 30% chromium, 5% molybdenum, and other substances. The alloy is used in dentistry and artificial joints, because of its resistance to corrosion. It is also used for components of turbochargers because of its thermal resistance. Vitallium was developed by Albert W. Merrick for the Austenal Laboratories in 1932.

In 2016 Norman Sharp, a 91 year old British man, was recognised as having the world's oldest hip replacement implants. The two vitallium implants were implanted in November 1948 at the Royal National Orthopaedic Hospital, under the newly formed NHS. The 67 year old implants had such an unusually long life, partly because they had not required the typical replacement of such implants, but also because of Mr Sharp's young age of 23 when they were implanted, owing to a childhood case of septic arthritis.[1]

For high-temperature use in engines, particularly turbochargers, the first alloy used was Haynes Stellite Nº 21, similar to Vitallium. This was suggested by the British engineer, and denture wearer, Sam Heron during WWII. Although the characteristics of the material obviously suggested itself for making turbocharger blades, it was thought impossible to cast it to the precision needed. Heron demonstrated that it could be, by showing his Vitallium dentures.[2]

  1. ^ "Former RNOH patient has world's oldest hip replacements". Royal National Orthopaedic Hospital. 21 March 2016. 
  2. ^ Setright, L.J.K. "Supercharging". Power To Fly. George Allen & Unwin. p. 195. ISBN 0-04-338041-7. 
  • Wojnar, L (2001). "Porosity structure and mechanical properties of vitalium-type alloy for implants". Materials Characterization. 46 (2–3): 221–225. doi:10.1016/S1044-5803(01)00127-9. 
  • Kaminski, M; Baszkiewicz, J; Kozubowski, J; Bednarska, A; Barcz, A; Gawlik, G; Jagielski, J (1997). "Effect of silicon ion implantation on the properties of a cast Co–Cr–Mo alloy". Journal of Materials Science. 32 (14): 3727–3732. doi:10.1023/A:1018607219482. 

Alnico알루미늄알루미늄 합금Aluminium-lithium alloyArsenical copper베릴륨BirmabrightBismanol비스무트크로뮴Chromium hydride코발트구리두랄루민갈륨유리HiduminiumHydronalium인듐ItalmaMagnalium마그네슘Megallium머큐리니크롬니켈플라스틱Plexiglas플루토늄칼륨로듐Rose's metal사마륨스칸듐나트륨스테인리스강강철StelliteStructural steel주석 (원소)타이타늄우라늄우드 합금Y alloy아연지르코늄베릴륨구리Billon (alloy)황동Calamine brassChinese silverDutch metalGilding metalMuntz metalPinchbeck (alloy)Tombac청동알루미늄 청동Arsenical bronzeBell metalFlorentine bronzeGlucydurGuanín (bronze)GunmetalPhosphor bronzeOrmoluSpeculum metalConstantanCopper hydrideCopper–tungstenCorinthian bronzeCunife백동Cymbal alloysDevarda's alloy호박금HepatizonManganinMelchior (alloy)양은Molybdochalkos노르딕 골드ShakudōTumbagaAlGaGalfenolGalinstanColored goldRhoditeCrown goldElinvarField's metalFernicoFerroalloy페로세륨FerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumInvar주철Iron–hydrogen alloy선철Kanthal (alloy)KovarStaballoyBulat steelCrucible steel41xx steel다마스쿠스 강MangalloyHigh-speed steelMushet steelMaraging steelHigh-strength low-alloy steelReynolds 531Electrical steelSpring steelAL-6XNCelestriumAlloy 20Marine grade stainlessMartensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelTool steelWeathering steelWootz steel땜납TerneType metalElektron (alloy)아말감Magnox (alloy)AlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNickel titaniumMu-metal퍼멀로이SupermalloyNickel hydridePlutonium–gallium alloy나크Mischmetal리튬Terfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichi스털링 실버Tibetan silverTitanium Beta CTitanium alloyTitanium hydrideGum metalTitanium goldTitanium nitride배빗메탈Britannia metal퓨터Queen's metalWhite metalUranium hydrideZamakZirconium hydride수소헬륨붕소질소산소플루오린메테인Mezzanine원자

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification