Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2015年11月) |
フライ・バイ・ワイヤ(英語: Fly by wire, FBW と略される)とは、航空機等の操縦・飛行制御システムの1種。直訳すると「電線による飛行」。
フライ・バイ・ワイヤ以前の機力操縦システムでは、パイロットが操縦桿(輪)やラダーペダルに与えた入力は、金属製のロープ(鋼索、この分野における「ワイヤ」との呼び分けでは「ケーブル」と呼ぶ)やロッドや滑車による機械的リンクを経由して、直結、あるいは油圧式のアクチュエータの補助により、補助翼・昇降舵・方向舵などの操縦翼面が動かされていた。自動操縦も、ケーブルへ自動操縦装置が機械的入力を与えることで達成されていた。
フライ・バイ・ワイヤでは、パイロットの操作を電線に流れる電気信号によって伝え、油圧式のアクチュエータを動かして操縦翼面を操作するものである。実際には、パイロットの操作をコクピットにある発信器と人工感覚装置で電気信号に変換され、機体にかかる加速度や傾きを検知するセンサとコンピュータを組込んだ、ジャイロとエレクトロニクスの入ったブラックボックスを介して、油圧式のアクチュエータに電線で送られており、操縦者の感知能力を補うことができるシステムとなっている。これにより、今までの操縦システムにおいて、航空機の姿勢を変える場合には、一旦大きく動翼を操舵して姿勢を変えた後、反対に動翼を操舵してから中立の位置に動翼を戻す、当て舵と呼ばれる操作が必要だったが、フライ・バイ・ワイヤでは、コンピュータが計算して当て舵を必要な分だけ取ることが可能となり、飛行性能が良くても、操作性や安定性が悪くて乗れなかった航空機を実用化できることが可能となった。また、操縦桿や方向舵ペダルは操縦者の操縦信号をコンピュータに入力するためのものとなるため、今までの操縦システムでの重さと操舵量の2つの機械的入力はいらなくなり、加える力の大きさの入力信号だけで十分となる。
アナログコンピュータを使用した初期のものはアナログFBW、デジタルコンピュータを使用するものはデジタルFBWと呼ばれる。また電気信号を伝える電線を複数にして、多重系にすることにより冗長性を持たせている。
おおむね以下のような利点と欠点がある。
フライ・バイ・ワイヤへの移行の前段階として、CAS(コントロール増強システム)と呼ばれるものがある。コンピューターによる飛行制御を、機械的リンクの補助として用いるものである。
フライ・バイ・ワイヤは、元々はアポロ計画での月着陸船やVTOL機などの空気力により安定を得られない宇宙船や航空機に使用されていた装置であったが、その後、超音速機の運動性向上や大型機の経済性向上の手段として採用されている。以下に採用例を示す。
軍用機では、試作のみで終わった大型戦闘機・CF-105 アローがデジタルFBWを採用していた。
実用機ではF-16に初めてアナログFBWが搭載された。F-16はCCV技術の導入により運動性の向上が図られており、以降の多くの戦闘機で同様の技術が採用されるようになった。F/A-18は実用機として初めてデジタルFBWを搭載し、F-16も後にデジタルFBWに換装された。
F-16以前においても、F-15の場合、機械系統が戦闘などで破損しても、前述のCASを通じて問題なく操縦が可能になっており、完全なデジタルFBWの一歩手前の状況まで来ていた。ただしCASはFBWと異なり1重のシステムであり、故障時を考慮して制御範囲を最大舵角の数%程度に抑えていたため、機体それ自体の安定性を放棄するCCV技術の導入は不可能であった。またF/A-18も機体の設計それ自体はF-16よりも古く、また機械的操縦機構をバックアップとして備えており、CCV技術の導入はされていない。
エアバスはA320で、旅客機として初めてデジタルFBWを採用した。同時に操縦桿はジョイスティック型となり、操縦席の脇に配置された。以降のA330・A340・A380などでも踏襲されている。エアバスではボーイングに比べるとコンピュータによるプロテクション機能を優先しており、その点も含めた設計思想の違いはたびたび議論の的となっている(前述のエールフランス296便事故や中華航空140便墜落事故を参照)。
マクドネル・ダグラスはベストセラー三発機DC-10の拡大型であるMD-11においてFBWを採用。DC-10に比して水平尾翼面積を30%削減して燃費の向上を計ったが、ETOPS認定で双発機での長距離路線が可能になったことで販売が伸び悩む。他の旅客機も軍需も振るわず窮地に陥った同社は、後にボーイングに吸収されることになる。
ボーイングは777で初めてデジタルFBWを採用した。形状は従来と似た操縦輪であり、エアバスのようなジョイスティックではない。プロテクション機能はあるものの、操縦感覚が重くなることでパイロットに注意を促すだけで、それ以上の力を操縦桿に加えれば、プロテクション機能を越える操縦をすることもできる。これは空中衝突などを避けるための急激な回避行動を取れるようにするための措置で、安全性に劣るということではない。
他にはイリューシンのIl-96、ボンバルディアのCRJシリーズ、エンブラエルのエンブラエル E-Jet(アナログFBW)などの例がある。
ヘリコプターの操縦システムは、リング機構やリング機構を介して油圧アクチュエータを作動させることにより、メインローターやテールローターのブレードを動かす機体がほとんどであるが、フライ・バイ・ワイヤを採用しているものもある。例としてNH-90では、メインローターとテールローターをフライ・バイ・ワイヤによって制御する、また、メインローター、テールローター、エンジンの動きをモニタリングするセンサーと機体の姿勢を検知するセンサーからの情報を、FBWの飛行制御コンピュータにフィードバックすることにより機体を安定させるようになっている。
[ヘルプ] |
This article uses material from the Wikipedia article "フライ・バイ・ワイヤ", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
3D,CAD,Model,Libary,Railway, Train, Ship, Marine, Submarine, Automotive, Locomotive, Bike, Car, Formula 1, Space, Aircraft, Aerospace, Satelite, Automobile, Yacht