Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution-Share Alike 3.0 (
| ||||||||||||||||||||||
外見 | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
淡黄褐色(加圧しなければほとんど無色) 冷却した液体状態のフッ素 | ||||||||||||||||||||||
一般特性 | ||||||||||||||||||||||
名称, 記号, 番号 | フッ素, F, 9 | |||||||||||||||||||||
分類 | ハロゲン | |||||||||||||||||||||
族, 周期, ブロック | 17, 2, p | |||||||||||||||||||||
原子量 | 18.9984032(5) | |||||||||||||||||||||
電子配置 | 1s2 2s2 2p5 | |||||||||||||||||||||
電子殻 | 2, 7(画像) | |||||||||||||||||||||
物理特性 | ||||||||||||||||||||||
相 | 気体 | |||||||||||||||||||||
密度 | (0 °C, 101.325 kPa) 1.7 g/L | |||||||||||||||||||||
融点 | 53.53 K, −219.62 °C, −363.32 °F | |||||||||||||||||||||
沸点 | 85.03 K, −188.12 °C, −306.62 °F | |||||||||||||||||||||
臨界点 | 144.13 K, 5.172 MPa | |||||||||||||||||||||
融解熱 | (F2) 0.510 kJ/mol | |||||||||||||||||||||
蒸発熱 | (F2) 6.62 kJ/mol | |||||||||||||||||||||
熱容量 | (25 °C) (F2) 31.304 J/(mol·K) | |||||||||||||||||||||
蒸気圧 | ||||||||||||||||||||||
| ||||||||||||||||||||||
原子特性 | ||||||||||||||||||||||
酸化数 | −1 (弱い酸性酸化物) | |||||||||||||||||||||
電気陰性度 | 3.98(ポーリングの値) | |||||||||||||||||||||
イオン化エネルギー | 第1: 1681.0 kJ/mol | |||||||||||||||||||||
第2: 3374.2 kJ/mol | ||||||||||||||||||||||
第3: 6050.4 kJ/mol | ||||||||||||||||||||||
共有結合半径 | 57±3 pm | |||||||||||||||||||||
ファンデルワールス半径 | 147 pm | |||||||||||||||||||||
その他 | ||||||||||||||||||||||
結晶構造 | cubic | |||||||||||||||||||||
磁性 | nonmagnetic | |||||||||||||||||||||
熱伝導率 | (300 K) 27.7 m W/(m·K) | |||||||||||||||||||||
CAS登録番号 | 7782-41-4 | |||||||||||||||||||||
主な同位体 | ||||||||||||||||||||||
詳細はフッ素の同位体を参照 | ||||||||||||||||||||||
| ||||||||||||||||||||||
フッ素(フッそ、弗素、英: fluorine)は原子番号 9 の元素。元素記号はラテン語のFluorumの頭文字よりFが使われる[1]。原子量は 18.9984 で、最も軽いハロゲン元素。また、同元素の単体であるフッ素分子(F2、二弗素)をも示す。
電気陰性度は 4.0 で全元素中で最も大きく、化合物中では常に -1 の酸化数を取る。反応性が高いため、天然には蛍石や氷晶石などとして存在し、基本的に単体では存在しない。
古くから製鉄などにおいて、フッ素の化合物である蛍石 (CaF2) が融剤として用いられた。例えば、ドイツの鉱物学者ゲオルク・アグリコラは1530年に著書「ベルマヌス」Bermannus, sive de re metallica dialogusにおいて、蛍石を炎の中で加熱し、融解させると、融剤として適切であると記している。1670年には、ドイツのガラス加工業者のハインリッヒ・シュヴァンハルト (Heinrich Schwanhard) が蛍石の酸溶解物にガラスをエッチングする作用があることに気づいた。
蛍石に硫酸を加えると発生するフッ化水素は1771年、カール・シェーレが発見していた。未知の元素が蛍石 (Fluorite) に含まれる可能性から、フランスのアンドレ=マリ・アンペールは、未発見の新元素にfluorineと名付けた。フッ化水素と塩化水素の組成がフッ素と塩素の違いだけであると、最初に主張したのはアンペールであった。彼はその後、名称を変える。ギリシア語の「破壊的な」という語から、phthorineとした。ギリシア語ではアンペールの新名称 (Φθόριο) を採用している。しかしながら、イギリスのハンフリー・デーヴィーがfluorineを使い続けたため、多くの言語ではfluorineに由来する名称が定着した。なお、日本語の「弗素」はドイツ語のFluorの音訳の1文字目から取られたものである。名称は定まったが、フッ化水素の研究は進まず、酸素を発見したアントワーヌ・ラヴォアジェも単離には至らなかった。
1800年、イタリアのアレッサンドロ・ボルタが発見した電池が、電気分解という元素発見に極めて有効な武器をもたらした。デービーは1806年から電気化学の研究を始めると、カリウム、ナトリウム、カルシウム、ストロンチウム、マグネシウム、バリウム、ホウ素を次々と単離。しかし1813年の実験では電気分解の結果、漏れ出たフッ素で短時間の中毒に陥ってしまう。デービーの能力を持ってしてもフッ素は単離できなかった。単体のフッ素の酸化力の高さゆえである。実験器具自体が破壊されるばかりか、人体に有害なフッ素を分離・保管することもできない。
アイルランドのクノックス兄弟は実験中に中毒になり、1人は3年間寝たきりになってしまう。ベルギーのPaulin Louyetとフランスのジェローム・ニクレも相次いで死亡する。1869年、ジョージ・ゴアは無水フッ化水素に直流電流を流して、水素とフッ素を得たが、即座に爆発的な反応がおきた。しかし、偶然にも怪我一つなかったという。
ようやく1886年、アンリ・モアッサンが単離に成功する。白金・イリジウム電極を用いたこと、蛍石をフッ素の捕集容器に使ったこと、電気分解を-50℃という低温下で進めたことが成功の鍵だった。当時は材料にも工夫があり、フッ化水素カリウム (KHF2) の無水フッ化水素 (HF) 溶液を用いた。だがモアッサンも無傷というわけにはいかず、この実験の過程で片目の視力を失っている。フッ素単離の功績から、1906年のノーベル化学賞はモアッサンが獲得した。翌年、モアッサンは急死しているが、フッ素単離と急死との関係は不明である。2012年に鉱物アントゾナイトにフッ素分子が含まれていることが確認された[2]。
単体は通常、二原子分子の F2 として存在する。常温常圧では淡黄褐色で特有の臭い(塩素のようとも、きな臭いとも称される)をもつ気体。非常に強い酸化作用があり、猛毒。
分子量 37.9968、融点 -223 ℃、沸点 -188 ℃、比重 1.11(沸点時、空気を1とする)。反応性が極めて高く、ヘリウムとネオン以外の殆んどの単体元素を酸化し化合物(フッ化物)を作る。
ガラスやプラチナさえも侵すためその性質上、単体で保存することは実質的に不可能である。もっぱら単体よりも穏やかな化合物の状態で保存され、容器には化合物であっても侵されにくいポリエチレン製の瓶や、テフロンコーティングされた容器が用いられる。単体はフッ化水素 (HF) を電解するか、フッ化水素カリウム (KHF2) を電解することで得られる。
必須微量元素のひとつであると主張する学術団体がある。欠乏と過剰になる量の範囲が狭い(歯のフッ素症#食事摂取基準を参照)。フッ素のサプリメントは、日本国外では製品化されているが、日本国内での製品化は難しいと主張されることもある。主な摂取源は飲料水と動物の骨などである。
フッ素の過剰摂取は骨硬化症、脂質代謝障害、糖質代謝障害と関連がある(フッ素症を参照)。
フッ素の単体は酸化力が強く、ほとんど全ての元素と反応する。
その性質上、フッ素を単体で使う場面は少なく、フッ化カルシウム (CaF2) と硫酸 (H2SO4) から生成するフッ化水素 (HF) を介して利用されることが多い。ウラン235 (235U) 濃縮のため、揮発性の高いフッ化ウラン (UF6) を製造する目的で単体フッ素が利用されることは、特筆すべき事柄である。
フッ素の化合物は、一般に極めて安定しており、長期間変質しないという特徴を持つ。この性質は環境中で分解されにくく、いつまでも残存するということを意味しており、その使用には注意が必要である。
フッ化物#利用も参照
エキシマレーザーの発振媒体としてフッ素ガスと希ガスの混合ガスが用いられる。例えば半導体の露光に用いられるArFレーザーがその代表である。配管にはフッ素との反応で不動態を形成する事により、それ以上腐食が進行しにくい銅などが用いられ、さらにガス漏洩時には迅速にバルブが遮断されるような安全装置も組み込まれている。
歯の表面処理に有効であり、歯磨き粉や歯科治療に使われる他、フッ素水道など水道水に混入する国がある。
フッ素にはガラスの屈折率を低下させる働きがあるため、光ファイバーなど通信の分野において、その屈折率制御にフッ素が使われている。
単体のフッ素やClF5などの化合物はロケット燃料の酸化剤として、1950-1970年頃にかけNASAを含むいくつかの機関で検討されたことがある[3]。例えばNASAでは液体酸素の代わりに液体酸素-液体フッ素の混合物(フッ素を70%含むFLOX-70や同30%含むFLOX-30等)をアトラスロケットのエンジンを用いて試験しているし[4]、ソビエトでも同様の実験が行われていた[5]。これはフッ素を酸化剤として使用した場合の比推力が酸素を用いた場合を上回るためであったが、性能向上がわずかであったのに対しフッ素の毒性や腐食性に伴う危険性ゆえに取り扱い上の困難が非常に大きく、結局ロケット燃料としての利用に関しては断念されることとなった[6]。
半導体や液晶の製造装置に溜まったシリコンなどのかすを除去するためにフッ素ガスが使われている。
フッ素の化合物はフッ化物と呼ばれる。
フッ素のオキソ酸は慣用名をもつ。次にそれらを挙げる。
オキソ酸の名称 | 化学式 (酸化数) |
オキソ酸塩の名称 | 備考 |
---|---|---|---|
次亜フッ素酸 (hypofluorous acid) |
HFO (−I) |
次亜フッ素酸塩 ( - hypofluorite) |
ウィキメディア・コモンズには、フッ素に関連するメディアがあります。 |
This article uses material from the Wikipedia article "フッ素", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
element,system,atom,molecule,metal,halogen,noble gas,chemical,chemistry