powered by CADENAS

Social Share

はんだ (23536 views - Material Database)

はんだ(半田、盤陀、英語: solder)とは、はんだ付けに利用される鉛とスズを主成分とした合金である。金属同士を接合したり、電子回路で、電子部品をプリント基板に固定するために使われる。材質にも依るが、4 - 10 K程度で超伝導状態へと転移する。 2003年のRoHSなど環境保全の取り組みにおいて、鉛を含まない鉛フリーはんだ(無鉛はんだ)が使われることが多い。
Go to Article

はんだ

はんだ

はんだ(半田、盤陀、英語: solder)とは、はんだ付けに利用されるスズを主成分とした合金である。金属同士を接合したり、電子回路で、電子部品をプリント基板に固定するために使われる。材質にも依るが、4 - 10 K程度で超伝導状態へと転移する。

2003年RoHSなど環境保全の取り組みにおいて、鉛を含まない鉛フリーはんだ(無鉛はんだ)が使われることが多い。

名称と語源

「はんだ」という名称は仮名書きされることが一般的で、カタカナ書きされることもあるが外来語ではない。「半田」「盤陀」などの当て字がある。

「はんだ」の語源は地名由来[1][2]とも、人名由来[1][2]ともされるがはっきりしない[1][2][3]

地名由来とする説には、江戸幕府の銀山であった半田山福島県桑折町)から来ている[3][4]という説がある。

中国語では焊 (hàn) 、または釬 (钎)、焊料、銲錫、焊接剤 (焊接剂)、鑞 (镴)である。

はんだの歴史

ろう付け(融点が450度以上の硬鑞を用いたろう接)には遅れるものの、はんだ付け(融点が450度未満の軟鑞を用いたろう接)の歴史も古い。紀元前3000年頃にははんだ付けが存在したと考えられている。ツタンカーメン王の墓からもはんだ付けを使った装飾品が出土している。ギリシャ-ローマ時代になると、水道配管を錫-鉛はんだではんだ付けした記録が残されている。

中国では、少なくとも紀元前300年頃には、はんだ付けした壷が存在していた。

日本

日本ろう接の歴史でもろう付けが先行した。5世紀ころには鋳掛補修が行われた銅鐸も作られている[5]。奈良の大仏の建造では、錫に鉛を混ぜた合金である白鑞(しろめ)がろう材として使われ[3]、仕上げや補修のために使用されたと考えられている[5]

貝原益軒の『万宝鄙事記』(1705年)には、錫鉛棒を炭火で溶かして銅容器の漏れを塞ぐ手法が記されている[3]。『和漢三才図会』(1713年)に記述された白鑞の製法は、鉛1斤(600g)に唐錫10両(375g)を練り合わせるというもので、この鉛と錫の配合比率は今日の「はんだ」とほぼ同様である[6]。しかし、これらの文献に「はんだ」の名は記されていない[3][6]幕末1866年に初演された河竹黙阿弥の歌舞伎狂言「船打込橋間白波」には、鋳掛屋のセリフに「鉛や盤陀の売物」という言葉が登場している[3]

はんだの種類

はんだは用途によりいくつかの種類に分けられる。の含有率で区別することが多い。用途により太さも異なる。と錫以外の成分を含むものもある。

  • 金属用
  • 電気用
    酸化を防ぎ、接合を容易にするために油脂の一種であるフラックス(以前は松脂が使われた)を含むものが多い。そのため、この種のはんだは一般的に「脂(やに)入りはんだ」と呼ばれている。
    錫の割合が63%、融点が184で最も低い。冷えると液相から固相へ瞬時に変化するため扱い易い。
    • 高融点はんだ、高温はんだ
    共晶はんだに溶かされると困る部分、高温にさらされる部分のはんだ付けに使用する
    • 低融点はんだ
    低融点の金属を混合し、特に融点を低くしたもの。
    • 入りはんだ
    銀メッキ面や銀撚り線などをはんだ付けする際に使用する。

JIS Z 3282-1999では、それぞれの成分割合の違いでSn-Pb系が16種、Pb-Sn-Sb系が7種、Sn-Sb系が1種、Sn-Pb-Bi系が5種、Bi-Sn系が2種、Sn-Cu系が2種、Sn-Pb-Cu系が2種、Sn-In系が1種、Sn-Ag系が3種、Sn-Pb-Ag系が4種、Pb-Ag系が3種規定されている。[7]

金系はんだ

シリコンゲルマニウムアンチモンなどと合金にする事で融点が下がり、金75-80%、錫20-25%では280℃で融解を始める。金は高価であるため、少量ながら特に信頼性が求められる用途でのみ使われ、シリコンやゲルマニウムの半導体でのダイ・ボンディングやパッケージのシーリングで使用される[8]

鉛問題

は人体や環境に有害なので、鉛を含まない鉛フリーはんだや、金属(など)を添加した接着剤への移行が進んでいる。ただし、鉛フリー化を行うために導入された元素あるいは化合物の毒性について十分な調査が行われているとは言い難く、鉛フリーであるから環境毒性が小さいと判断することは早計である。

関連項目


クロムモリブデン鋼AL-6XNAlGaAlloy 20アルニコ磁石アルミニウムアルミニウム合金アルミニウム青銅Aluminium-lithium alloyArsenical bronzeArsenical copperBell metalベリリウムベリリウム銅ビロンBirmabrightBismanolビスマス黄銅青銅Bulat steelCalamine brass鋳鉄CelestriumChinese silverクロムChromium hydrideコバルトホワイトゴールドコンスタンタン水素化銅Copper–tungstenCorinthian bronzeCrown goldCrucible steelクニフェ白銅Cymbal alloysダマスカス鋼デバルダ合金ジュラルミンDutch metalケイ素鋼エレクトロン貨エリンバーFernicoフェロアロイフェロセリウムフェロクロムフェロマンガンフェロモリブデンFerrosiliconFerrotitaniumFerrouraniumField's metalFlorentine bronzeGalfenolガリンスタンガリウムGilding metalガラスGlucydurGuanín (bronze)砲金HepatizonHiduminium高速度鋼高張力鋼HydronaliumインジウムインバーIron–hydrogen alloyItalmaKanthal (alloy)コバールMagnaliumマグネシウム高マンガン鋼マンガニンマルエージング鋼Marine grade stainlessMartensitic stainless steelMegalliumMelchior (alloy)マーキュリーMolybdochalkosMuntz metalMushet steelニクロムニッケル洋白ノルディック・ゴールドOrmoluリン青銅銑鉄Pinchbeck (alloy)合成樹脂PlexiglasプルトニウムカリウムReynolds 531RhoditeロジウムRose's metalサマリウムSanicro 28スカンジウム赤銅 (合金)Silver steelナトリウムスペキュラム合金スピーゲルばね鋼Staballoyステンレス鋼ステライト鉄骨構造Surgical stainless steelスズチタントムバック工具鋼TumbagaウランVitallium耐候性鋼ウッドメタルWootz steelY alloyZeron 100亜鉛ジルコニウムTerne活字合金Elektron (alloy)アマルガムマグノックスAlumelBrightrayChromelHaynes InternationalインコネルモネルNicrosilNisilNickel titaniumMu-metalパーマロイSupermalloyNickel hydrideプルトニウムガリウム合金ナトリウムカリウム合金ミッシュメタルリチウムTerfenol-DPseudo palladiumScandium hydrideサマリウムコバルト磁石Argentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterling四分一 (合金)スターリングシルバーTibetan silverTitanium Beta Cチタン合金Titanium hydrideGum metalTitanium gold窒化チタンバビットメタルBritannia metalピューターQueen's metalWhite metal水素化ウラン(III)ZamakZirconium hydride水素ヘリウムホウ素窒素酸素フッ素メタン中二階原子

This article uses material from the Wikipedia article "はんだ", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification