Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution-Share Alike 3.0 (Unkown).
Questa voce o sezione sugli argomenti aviazione e ingegneria è priva o carente di note e riferimenti bibliografici puntuali. Sebbene vi siano una bibliografia e/o dei collegamenti esterni, manca la contestualizzazione delle fonti con note a piè di pagina o altri riferimenti precisi che indichino puntualmente la provenienza delle informazioni. Puoi migliorare questa voce citando le fonti più precisamente. Segui i suggerimenti dei progetti di riferimento 1, 2. |
Una turbina (dal latino turbo, vortice, dal Greco τύρβη, tyrbē, "turbolenza"),[1][2] è una turbomacchina motrice idonea a raccogliere l'energia cinetica e l'entalpia di un fluido ed a trasformarla in energia meccanica.
Il tipo più semplice di turbina prevede un complesso chiamato stadio, formato da una parte fissa, detta distributore o statore, ed una parte mobile, girante o rotore. Il fluido in movimento agisce sulla palettatura della parte rotorica, mettendola in rotazione e quindi cedendo energia meccanica al rotore.
I primi esempi di turbina furono i mulini a vento e le ruote idrauliche.
Una turbomacchina che viceversa cede lavoro al flusso viene detta compressore se il fluido elaborato è un gas o pompa se il fluido elaborato è un liquido.
Quasi tutti i tipi di turbina hanno inoltre una cassa, detta anche parte statorica o voluta, attorno alla parte rotorica che ha il compito di indirizzare e controllare il flusso. Tale parte può variare molto a seconda delle applicazioni o delle condizioni del flusso.
L'energia del fluido viene resa disponibile grazie alla rotazione dell'albero della turbina. Questa energia cinetica è calcolabile con la formula matematica , dove m è la massa di liquido che batte sulla turbina e v la relativa velocità. Nella formula si inserisce la componente normale della velocità finale in un punto prossimo alla turbina; la componente tangenziale non produce lavoro meccanico né energia.
Nel caso di turbine idrauliche, l'acqua subisce un incremento di velocità nel passaggio lungo la condotta, che ai fini del calcolo è un piano inclinato che separa il bacino dalla turbina. La velocità iniziale del liquido in uscita dal bacino superiore è calcolabile con la legge di Torricelli. La velocità di fine corsa del fluido, con cui batte sulla turbina, è pari a
dove l è la lunghezza della condotta forzata, e θ è l'angolo di incidenza fra la condotta forzata e la turbina. La velocità è calcolata con la formula che serve per descrivere il moto di un oggetto lungo un piano inclinato.
L'energia cinetica del corpo può essere quindi espressa come:
Il fluido possiede un'energia potenziale che durante la caduta viene interamente convertita in energia cinetica[non interamente: ci sono le perdite per attrito nella condotta.]. La stessa quantità è anche il lavoro utile del fluido: il fluido si muove lungo la condotta con una forza pari a mgsenθ, spostandosi di l metri. Il lavoro utile è massimo per θ = 90°, vale a dire se il fluido potesse cadere verticalmente.
Per riportare il fluido alla cima del piano inclinato e ripetere la caduta, è necessario vincere la forza peso del fluido con una forza di mg per un'altezza pari a H.
Se confrontiamo il lavoro di "risalita" con quello di caduta del fluido risulta che:
Infatti, per definizione di seno, vale che:
da cui si ottiene una disequazione vera per ogni valore della prevalenza.
La potenza massima ottenibile con una turbina è calcolabile con:
dove P è la potenza (W), ρ la densità del fluido (kg/m³), V la portata volumetrica (m³/s), g è l'accelerazione di gravità (m/s²) ed H il salto motore, il dislivello fra il bacino superiore e la turbina sommate alle perdite di carico (metri).
Si noti che il prodotto ρV è pari alla portata massica, e quindi la potenza è ricavabile, per definizione di potenza, derivando il lavoro utile rispetto al tempo.
Il lavoro di una turbina è una complicazione del lavoro euleriano di una macchina rotante.
Il lavoro euleriano è il principio di funzionamento di una macchina rotante, e deve essere calcolato tenendo conto che quando l'osservatore e l'oggetto misurato si muovono a velocità diverse, è necessario comporre le forze in gioco con il triangolo delle forze.
L'osservatore, al solito, è fermo rispetto al rotore ed è un sistema di riferimento solidale con la pala (esempio tipico: osservatore seduto sulla pala).
Oltre alla velocità v assoluta, che è la velocità del fluido che colpisce sulla pala, l'osservatore vedrà anche una velocità periferica o di trascinamento u = ω · r, con direzione perpendicolare a r e proporzionale alla velocità angolare ω (giri/minuto).
L'osservatore in altre parole non vede la velocità assoluta v, ma la composizione w = u + v e nel moto relativo il lavoro è nullo. Fissando l'origine del sistema di riferimento (l'osservatore) sulla pala, i due organi si muovono assieme in modo solidale (alla stessa velocità) e fra i due non c'è spostamento, e quindi il lavoro è nullo.
La turbina è un sistema aperto che scambia massa ed energia con l'esterno.
Scrivendo la conservazione dell'energia per i sistemi aperti nel moto relativo (rispetto all'osservatore), il lavoro è nullo e non è visibile la velocità assoluta :
Scrivendo l'equazione della conservazione dell'energia per i sistemi aperti in un riferimento assoluto si ha:
Sottraendo membro a membro si ottiene l'espressione del lavoro euleriano di una macchina rotante:
Le turbine possono essere di diversi tipi. In particolare si possono classificare secondo:
Il grado di reazione è definibile come un numero che quantifica l'energia che rimane da trasformare rispetto all'energia totale utile.
salto utile, espresso in
.
velocità in entrata nella girante, espressa in
.
accelerazione di gravità nei pressi della superficie terrestre, pari a 9,81
.
Questa sezione sull'argomento tecnologia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. |
La turbina ad azione è un tipo di turbina nella quale tutta l'energia potenziale derivante dal salto utile dell'impianto viene trasformata in energia cinetica nel distributore. Di conseguenza il grado di reazione è nullo. Un esempio lampante è la Pelton.
La turbina a reazione è un tipo di turbina nella quale l'energia potenziale derivante dal salto utile dell'impianto viene trasformata in energia cinetica solo in una percentuale dal distributore, mentre il resto viene lasciato alla girante.
Le più conosciute sono la Francis e la Kaplan.
Questo tipo di turbina comporta, sull'arrivo ad alta pressione, qualche girante che funziona ad azione, seguita, sulla parte a bassa pressione, da un tamburo con palette mobili, che costituisce uno stadio a reazione.
La turbina può essere applicata:
This article uses material from the Wikipedia article "Turbina", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD