Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution-Share Alike 3.0 (Unkown).
Questa voce o sezione sull'argomento meccanica è ritenuta da controllare. Motivo: La voce è stata moderatamente migliorata, ma rimangono da revisionare testo e fonti: l'impostazione è da manuale anziché da enciclopedia, la prosa è incomprensibile e viene dato troppo spazio a soluzioni di dubbia importanza. Le fonti non rispondono quasi mai a criteri di rilevanza ed autorevolezza Partecipa alla discussione e/o correggi la voce. |
Il motore a due tempi è un tipo di motore a combustione interna: alimentato da un impianto d'alimentazione, scarica i prodotti esauriti (gas di scarico) tramite un impianto di scarico.
Fu inventato dall'ingegnere Dugald Clerk[1]nel 1879, ma fu Karl Benz[2] a sperimentarlo per la prima volta nel 1880.
Questo motore si differenzia dal più diffuso motore a quattro tempi principalmente per la differente alternanza delle fasi attive (fasi utili o di potenza) in relazione ai giri dell'albero motore: infatti se nel quattro tempi si ha una fase attiva o di espansione (fase in cui avviene la trasformazione effettiva dell'energia chimica in termica e dunque cinetica) per ogni due giri dell'albero, nel due tempi se ne ha una per ogni giro completo dell'albero.
Strutturalmente, il motore a due tempi, di norma non presenta le classiche valvole d'aspirazione e scarico, sostituite dalle "luci", feritoie ricavate sul cilindro, aperte e chiuse dal moto alternato del pistone.
Una caratteristica che distingue il motore a due tempi (escludendo i modelli con ammissione a disco rotante e le esigenze dell'impianto di accensione) dal quattro tempi è quella di poter funzionare perfettamente in entrambi i sensi di rotazione. Questo è permesso dal fatto che le luci di scarico/travaso vengono aperte e chiuse dal pistone in maniera speculare rispetto al punto morto inferiore, dove la luce di scarico è la prima ad aprire e l'ultima a chiudere. Al contrario, nel 4 tempi la simmetricità non c'è perché deve essere aperta soltanto una delle due valvole (salvo il breve periodo dell'incrocio, in cui sono aperte entrambe), e tassativamente in modo asimmetrico rispetto al punto morto inferiore.
Un'altra caratteristica che distingue i due motori è la "pompa di lavaggio" che nel due tempi permette l'immissione tramite una compressione dei gas, generalmente essa è costituita dal carter pompa, dalla superficie interna del pistone e da un sistema di ammissione dei gas freschi, mentre in altri casi (vedi i motori diesel 2T a lavaggio unidirezionale) la pompa di lavaggio è invece una vera e propria pompa volumetrica, azionata solitamente dall'albero motore, in altri casi ancora si hanno dei turbocompressori azionati dai gas di scarico, che aiutano il lavoro della suddetta pompa, la quale non è completamente sostituibile.
Sono presenti solo nei motori con carter-pompa e l'ammissione dei gas freschi può avvenire attraverso quattro differenti dispositivi/modi:
/>
Se non si adopera il sistema a carter pompa si utilizzano altri sistemi che sostituiscono la funzione del carter pompa, essi vengono normalmente impiegati sui motori a quattro tempi come soluzione alla sovralimentazione: in questo caso non è necessario adoperare alcun tipo di valvola in aspirazione.
Lo stesso argomento in dettaglio: Sovralimentazione. |
Per il lavaggio, la sostituzione dei gas combusti con i gas freschi, si può avere:
Altra differenza dal motore a quattro tempi riguarda la lubrificazione interna:
Il ciclo termodinamico del motore a due tempi si sviluppa completamente in un'unica rotazione dell'albero motore, ma la successione completa delle varie fasi che interessano il fluido motore avviene nell'arco di una rotazione, questo perché il pistone svolge una doppia funzione, come meglio spiegato di seguito.
Il pistone, in salita verso il PMS (Punto Morto Superiore), crea una depressione nel carter pompa, e contemporaneamente apre la luce di aspirazione. Nel caso del piston port questa apertura avviene con fasatura simmetrica rispetto al PMS, con ovvi svantaggi, mentre nel caso della valvola rotante l'apertura ha una fasatura fissa, ma ottimizzata per il miglior rendimento in un certo campo di regimi di rotazione. È invece la depressione presente nel carter a provocare l'apertura automatica della valvola lamellare, con fasatura variabile. La depressione (0.2-0.4 bar) richiama la miscela fresca (aria/benzina) dalla luce di aspirazione immettendola nel carter pompa, che la porterà nel cilindro attraverso le luci di travaso nella fase successiva.
Durante la discesa del pistone verso il PMI (Punto Morto Inferiore) avviene la compressione della miscela nel carter pompa, con un rapporto di compressione compreso tra 1,20:1 e 1,45:1. Nel momento in cui si aprono le luci di travaso, esaurita l'eventuale sovrappressione residua della fase di scarico, la miscela fresca aria-benzina entra nel cilindro anche grazie alla depressione generata dalla parte iniziale dell'impianto di scarico, che aiuta il travaso dei gas freschi, durante questa fase parte di questa miscela esce anche dalla luce di scarico, mista a gas combusti.
Il pistone, risalendo dal PMI, occlude dapprima le luci di travaso, poi quelle di scarico. Fra queste due fasi può avvenire una prima compressione causata dall'onda di pressione riflessa dal controcono dell'impianto di scarico, se quest'ultimo è del tipo risonante (detto anche "ad espansione" per via della notevole variazione di sezione). In questo caso, una parte della miscela fresca rientra nel cilindro, anche se la quantità intrappolata è inferiore alla cilindrata, perché comunque è sempre presente una frazione di gas combusti.
Nella parte finale della compressione la carica fresca viene movimentata dall'anello di squish se presente, generando una forte vorticosità che consente una combustione migliore ed un aumento del rendimento termodinamico.
L'accensione, avviata da una candela, avviene con anticipi nettamente inferiori a quelli tipici del 4 tempi nel caso del Motore ad accensione comandata, grazie alla forma più razionale della testa permessa dall'assenza delle valvole a fungo. L'eventuale presenza dell'area di squish consente di utilizzare rapporti di compressione molto elevati senza incorrere in fenomeni deleteri, come la detonazione, inoltre nel 2 tempi è possibile utilizzare un impianto di accensione ad anticipo costante senza una eccessiva perdita di rendimento.
Dopo il PMS inizia l'espansione, che si interrompe all'apertura della luce di scarico per via del brusco calo di pressione, tuttavia non vi è una perdita notevole di rendimento rispetto ad un 4 tempi, visto che entrambi richiedono una simile apertura anticipata delle valvole di scarico. Con il passare degli anni la luce di scarico dei due tempi si è via via ridotta, a favore di una sua estensione trasversale, in modo da guadagnare corsa utile e avere un rendimento maggiore, del tutto paragonabile a quello dei quattro tempi.
In fase di discesa il pistone scopre la luce di scarico. L'espulsione dei gas combusti avviene per semplice differenza di pressione, e non per l'azione di pompaggio del pistone come nel 4 tempi. Lo scarico risuonante, se presente, velocizza questa fase, grazie alla depressione sviluppata dal primo tratto dello stesso, permettendo di ridurre l'altezza delle luci di scarico e aumentare il rendimento.
In alcuni casi, come nei motori con aspirazione lamellare e vano della valvola collegato ai condotti di lavaggio, questa depressione può addirittura influire sul "rapporto di lavaggio", aumentando la quantità di gas freschi che entrano nel cilindro.
Il lavaggio (o travaso) del cilindro con i gas freschi, nei motori a due tempi, avviene secondo varie scuole di pensiero:
Questo tipo di motore (CrossFlow in inglese) ha due luci, una di scarico e una di travaso, poste ai lati opposti del cilindro, con il pistone munito di deflettore, per evitare che i due flussi (gas di scarico e miscela fresca) si mescolino, quindi la carica fresca va verso la testa grazie alla forma del deflettore, mentre i gas combusti escono.
Questo è stato uno dei primi sistemi di lavaggio utilizzati nella produzione, ma ha avuto vita breve per via delle complicazioni indotte dal deflettore, che appesantisce il pistone e aumenta la superficie esposta alla combustione, rendendo difficile il disegno di una camera di combustione ottimale.
In questo tipo di lavaggio (Loop-scavenged in inglese), si studiano le varie posizioni e direzioni delle luci e condotti di lavaggio per avere un risultato ottimale ed eliminare la necessità del deflettore. In pratica le luci sono disposte in direzione opposta alla luce di scarico, imponendo alla miscela fresca di salire verso la testa, invertire la direzione e raggiungere lo scarico soltanto dopo aver effettuato questa "giravolta", da cui il nome inglese. Spesso viene denominato lavaggio "Schnürle" dal nome dell'ingegnere tedesco, Adolf Schnürle, che lo ideò nel 1925. Inizialmente pensato per i motori diesel della KHD, venne ceduto in licenza esclusiva alla DKW. Il sistema di lavaggio a correnti tangenziali si è ampiamente diffuso dapprima in Germania e, dopo la seconda guerra mondiale, anche nel resto del mondo. Attualmente è il tipo di lavaggio più utilizzato nei motori moderni ad accensione comandata, viceversa, nei motori ad accensione spontanea, è stato sostituito dal ciclo unidirezionale.
Il motore a ciclo loop è stato proposto in alcune particolari e controverse configurazioni, che più o meno si discostano come struttura da un motore classico.
Questo tipo di motore riprende in parte i vantaggi del motore con pistoni a doppio diametro, ma il pistone ha una forma tradizionale.
La sua peculiarità è di avere al posto delle bielle delle aste, azionate direttamente dall'albero motore secondo uno schema insolito ad aste, ciascuna dotata di un sistema di tenuta che isola la camera in cui si muove il pistone dal carter, quindi la "pompa di lavaggio" è costituita dalla parte inferiore del pistone, dal cilindro e dall'asta e relativa tenuta.
Il rapporto di pre-compressione è più alto rispetto al sistema con carter pompa, ma il "rapporto di lavaggio" (rapporto fra volume di gas freschi immessi nel cilindro e volume del cilindro) sarà più basso a causa della minore cilindrata della pompa rispetto alla camera superiore, in quanto alla cilindrata occorre sottrarre il diametro dell'asta di comando del pistone moltiplicato per la corsa.
Il vantaggio è di avere l'imbiellaggio ben lubrificato, dato che è isolato dalla camera-pompa di lavaggio, ma è anche vero che questo sistema non consente regimi di rotazione molto elevati, visti i pesi notevoli delle parti in moto alterno e della complessità del sistema di azionamento delle aste.
L'ammissione della carica fresca alla camera-pompa può essere regolata da uno qualsiasi dei sistemi già visti, invece per quanto riguarda l'immissione della carica fresca nel cilindro, si può seguire sia lo schema a flussi incrociati che il loop.
Tipo di motore a due tempi ideato per supplire a tutti i difetti costruttivi e ecologici del classico motore a miscela e che riprende la tecnologia dell'iniezione diretta che era stata abbandonata sulle grandi cilindrate per motori stradali e usata solo dai ciclomotore a iniezione elettronica, inoltre è caratterizzato da un tutt'altro che tradizionale movimento del pistone, infulcrato su uno dei lati, accoppiato a un sistema d'ammissione lamellare, ed inoltre questo motore è nato per funzionare a idrogeno[3]. Il motore riprende in parte le caratteristiche del motore pendolare di Taurozzi che è caratterizzato da questo tipo di movimento, che permette di annullare la forza laterale che normalmente si sviluppa sul cilindro durante il normale scorrimento del pistone.
Questo tipo di lavaggio (Uniflow-scavenged in inglese) è utilizzato principalmente sui motori Diesel due tempi, ma può essere utilizzato anche per motori ad accensione comandata.
Nel caso di un motore con una struttura classica (generalmente nella configurazione diesel), l'immissione della carica fresca avviene tramite i travasi, mentre lo scarico avviene tramite una o più valvole a fungo e l'iniettore posti sulla testata del motore[4], ma questa tipologia di motore esiste anche in una configurazione inversa.
Il nome è dato dal fatto che il flusso dei gas freschi va dalla testa del motore alla luce di scarico quasi in linea retta, limitando così la possibilità di miscelazione con i gas combusti, inoltre ha come secondo vantaggio la possibilità d'utilizzare un carter a bagno d'olio o a secco, dove l'olio non è a contatto con il carburante, un motore di questo tipo è il 2T Diesel navale Wärtsilä-Sulzer RTA96-C della Wärtsilä, che ha un rendimento superiore al 0,5 o 50% (risultando uno tra i migliori).
Una variante di questa tipologia di motore (poco usata) sfrutta il carter come pompa di lavaggio, quindi lo scarico avviene tramite una o più valvole a fungo poste sulla testata: questa configurazione perde il vantaggio della lubrificazione, dato che l'olio deve essere miscelato con il carburante.
Un altro tipico caso di lavaggio unidirezionale si ha nel motore a 2 tempi a stantuffi contrapposti ideato da DKW (generalmente nella configurazione ad accensione comandata), dove i due alberi motore sono sfasati opportunamente, in modo da iniziare a scaricare prima che si aprano le luci di lavaggio e da chiudere i travasi per ultimi, in questo modo la "pompa di lavaggio" può attuare una reale sovralimentazione.
Un'altra struttura di questo ciclo è il motore a due tempi a cilindri paralleli, ideato da Garelli-Marcellino-Isomoto, che possiede cilindri paralleli formati da un unico elemento, una testa che mette in comunicazione i due cilindri formata anch'essa da un unico pezzo, dove un cilindro ha la luce di scarico e l'altro permette l'ingresso di carica fresca al carter-pompa ed è munito di almeno un travaso, inoltre i pistoni sono vincolati all'albero motore tramite una sola biella a "Y" o con una biella munita di bielletta come nel caso della Iso Isetta.[5][6]
Questa disposizione permetteva d'avere i due pistoni leggermente sfasati tra loro, consentendo un'apertura anticipata della luce di scarico rispetto alla luce del/i travaso/i e una chiusura posticipata di questi rispetto alla luce di scarico, senza il problema della sfasatura dei due alberi motore, che porta a una perdita di rendimento termico, dato che il tutto veniva gestito da un solo albero motore.
Esiste una variante del sistema che prevede i due cilindri disposti lungo l'asse di rotazione dell'albero motore, il che porta ad avere i due pistoni alle altezze desiderate durante la rotazione e senza il problema del corsoio su uno dei due pistoni o di una biella madre e di una bielletta[7][8].
Il motore a 2 tempi a cilindri paralleli con pistone di lavaggio o Ladepumpe è stato ideato da DKW: è un motore che permette una lubrificazione indipendente dalla miscela fresca e un motore a cilindri paralleli costruito in modo semplice rispetto a quanto verrà fatto in seguito dalla Garelli-Marcellino-Isomoto[9].
Un'altra struttura di questo ciclo è il motore a due tempi a cilindri convergenti, ideato da DKW, contenente due cilindri convergenti in un unico punto, in modo da ridurre il volume della camera di combustione, una testa che mette in comunicazione i due cilindri formata anch'essa da un solo pezzo, dove un cilindro ha la luce di scarico e l'altro permette l'ingresso di carica fresca al carter-pompa ed è munito di almeno un travaso, inoltre i pistoni sono vincolati ognuno a un proprio albero motore, ognuno vincolato all'altro tramite un sistema a ingranaggi creato direttamente sullo spallamento dell'albero motore e che vincola a far ruotare i due alberi in direzioni opposte, inoltre con questo motore si utilizza una pompa di lavaggio diversa dal carte pompa, esattamente come nel motore a cilindri paralleli.[5][10]
Il motore a scalinata (Stepped Piston Engine in inglese), utilizza una tecnica particolare per l'aspirazione e distribuzione della carica fresca nel cilindro del motore, che consiste nell'avere un cilindro complementare e relativo pistone che aspira e distribuisce la carica dentro ad altri due cilindri, dove avviene la combustione, per poter alimentare due cilindri, questo pistone (che ruota allo stesso regime degli altri due) ha due camere, di cui una è formata dalla testata, cilindro e pistone, mentre la seconda è formata dal cilindro, pistone e carter.[11]
Per regolare il flusso della carica fresca nel cilindro complementare si può utilizzare la semplice tecnica del piston port: una luce centrale al cilindro viene aperta solo quando il pistone è alle estremità, alimentando la camera opposta a quella momentaneamente utilizzata, mentre per il flusso diretto a uno dei due cilindri dove avviene la combustione il flusso è governato dal semplice movimento del pistone che apre o chiude le luci dei travasi.
Il vantaggio di questo sistema è che il pistone è più facilmente lubrificabile e si possono impiegare cuscinetti come su un motore a quattro tempi. I brevetti su questo disegno sono detenuti da Bernard Hooper Engineering Ltd (BHE).
L'evoluzione di questo sistema è l'utilizzo di pistoni a doppio diametro, dove si può avere anche un solo cilindro che è a diametro differenziato, ovvero con una zona superiore normale ed una zona a diametro maggiorato più in basso (vicino all'albero motore) e anche il pistone è forgiato nello stesso modo, in questo modo la funzione di pompa di lavaggio viene svolta dall'insieme cilindro-pistone maggiorato a fianco, mentre la parte superiore a diametro ridotto funziona come un normale 2 tempi.[12] È evidente che i due pistoni devono avere gli angoli di manovella sfasati di 180 gradi.
Nei motori a due tempi si adottano degli accorgimenti per migliorare la funzionalità delle varie fasi e il rendimento globale del motore 2T a carter pompa, infatti il 2T unidirezionale è più vicino al motore a quattro tempi:
Lo stesso argomento in dettaglio: Polmone di recupero. |
Mentre in un motore a quattro tempi le fasi sono ben definite, nel due tempi si arriva ad un vero e proprio accavallamento: il travaso avviene in contemporanea allo scarico, così come la compressione corrisponde nel ciclo all'aspirazione.
Nei motori ad accensione comandata con ciclo loop, flussi incrociati o a scalinata, l'incontro, nella fase di travaso/scarico, della miscela fresca e di quella combusta fa sì che una parte della prima miscela combustibile possa uscire dal condotto di scarico, oppure che una parte dei gas di scarico resti nella camera di combustione, intaccando in questo modo la potenza specifica del motore, che nel ciclo teorico sarebbe doppia rispetto ad un propulsore a quattro tempi, in quanto il due tempi possiede un fase utile per ogni giro di rotazione dell'albero motore, mentre il quattro tempi ne ha una ogni due.
Inizialmente il limite del motore a due tempi era proprio quello di fornire un rendimento globale (volumetrico, termico e meccanico), a parità di cilindrata, più basso rispetto a quello di un quattro tempi, a causa sia delle perdite inevitabili nella fase di lavaggio, sia anche se in piccola parte, della ridotta pressione media effettiva (conseguenza della minore cilindrata utile, sia in fase di espansione che in quella di aspirazione della carica). Con l'ausilio di accorgimenti specifici come lo scarico risonante (espansione), tuttavia anche per tale motore si è di molto migliorato il rendimento volumetrico (che comunque rimane inferiore al motore a quattro tempi), mentre il rendimento termico e meccanico è sempre stato superiore rispetto al quattro tempi, arrivando ad avere un rendimento globale (volumetrico, termico e meccanico) agli stessi livelli o superiore al motore a quattro tempi (sempre alimentati a carburatore), ma con una perdita di carica fresca superiore a quest'ultimo (per via del ciclo di funzionamento).
Questi limiti sono molto ridotti nei motori ad accensione spontanea (diesel 2t) che inizialmente erano a ciclo loop, il cui limite era una perdita di comburente (aria) dallo scarico, il che richiedeva l'iniezione di minor combustibile, mentre nei più recenti motori ad accensione spontanea, che utilizza lo schema a ciclo unidirezionale (applicabile anche nei sistemi ad accensione comandata), si utilizza un compressore centrifugo o turbocompressore per poter pulire e riempire meglio il cilindro. Con questa soluzione il motore a due tempi ha un rendimento superiore a qualsiasi tipologia di motore a quattro tempi, con una perdita di carica fresca del tutto paragonabile al motore a quattro tempi, senza perdere le sue caratteristiche principali, (minor costo, minor manutenzione e maggiore leggerezza).
Un altro caso che ha portato ad una riduzione degli inconvenienti di questo motore è l'iniezione diretta meccanica, soluzione adottata dalla Borgward nei primi anni cinquanta con alcuni modelli della Gutbrod[16], alcuni modelli della Goliath[17] e la Goliath GP 700 sport[18], in tutti i casi si ha un motore bicilindrico.
Attualmente il maggiore limite dei motori ad accensione comandata due tempi a ciclo loop rispetto alle motorizzazioni 4T è l'accoppiamento con un'iniezione diretta (anche se utilizzata dal 2000 circa per i motori fuoribordo per piccole imbarcazioni, come i gommoni). Tale sodalizio risulta estremamente difficile per i motori motociclistici che hanno regimi di funzionamento molto più elevati, dove l'unico modello prodotto con tale sistema d'alimentazione è stato il Vdue della Bimota, il quale però è dovuto ritornare all'alimentazione a carburatore.
Questo primo insuccesso dell'iniezione diretta è dovuto al riempimento disomogeneo del cilindro e alla disuniformità della carica, creando molti problemi; attualmente aziende motociclistiche come l'Aprilia, stanno tentando di riproporre l'iniezione diretta con buoni risultati, anche se tale sistema rimane confinato agli scooter, classificati come ciclomotori a iniezione elettronica.
Un altro sistema per aumentare le prestazioni delle motorizzazioni ad accensione comandata a due tempi è l'utilizzo della cosiddetta iniezione indiretta, come nella OSSA TR, la quale permette un condotto d'aspirazione di maggiore diametro e di lunghezza ridotta rispetto al carburatore, e di conseguenza un migliore riempimento del carter pompa. La stessa OSSA produce motociclette specialistiche per enduro, equipaggiate con motori a due tempi caratterizzati da un'iniezione elettronica, in parte iniezione indiretta sfociante nel carter ed in parte iniezione diretta sfociante direttamente nel cilindro. Queste accuratezze dovrebbero garantire doti di potenza e coppia uniche nel loro genere, in totale rispetto dell'ambiente. Una strada analoga è stata intrapresa da Athena Racing, produttrice di vari tipi di gruppi termici. In questo caso il sistema di iniezione indiretta/iniezione diretta è accoppiato ad un motore di 50cc. Nell'ambito dei motori fuoribordo l'Evinrude Outboard Motors già da tempo ha lanciato una serie di propulsori a due tempi, alimentati da una sofisticata iniezione elettronica e sistema lubrificante all'avanguardia, il che permette di contenere di più le emissioni rispetto a qualsiasi altro motore, ma contemporaneamente migliorando le prestazioni[19].
Honda nel 1995 ideò un sistema molto semplice, caratterizzato da una valvola di contropressione ARC (Activated Radical Combustion), che permise di ridurre le emissioni dei motori a due tempi a ciclo loop allineandole a quelle del motore a quattro tempi, la moto in questione è la Honda EXP-2[20][21], successivamente venne utilizzata per il CRM 250 AR del 1996 (solo mercato giapponese) e l'Honda Pantheon.[22]
La Malaguti con la sua MR250 del 2008, moto per il solo mercato giapponese, utilizza un sistema di scarico con un'espansione stravolta nella forma, permettendo di generare una potenza di 50 CV, rispettando l'omologazione Euro 3.[23]
Nel 2017 la KTM ufficializza la produzione di motoveicoli da competizione a due tempi da 250 e 300 cc ad iniezione elettronica nel cilindro (a luci di scarico aperte), denominato TPI (Transfer Port Injection), composto da due iniettori posti nei travasi laterali (conosciuti anche come 2° luce)[24], tale sistema pur essendo ad iniezione diretta nel cilindro non inietta direttamente nella camera di combustione, in quanto l'iniezione avviene quando le luci di scarico sono ancora aperte.
A differenza dei motori a due tempi a ciclo unidirezionale con immissione controllata da una o più valvole a fungo o sistema piston port (al cilindro), si ha un'inversione dei ruoli, con minor consumo specifico ed emissioni minori rispetto alla concorrente a quattro tempi, anche se perde parte dei suoi vantaggi, come la reversibilità e l'inclinabilità del motore dato che utilizza un sistema di lubrificazione pari al motore a quattro tempi, inoltre necessita di un dispositivo per il lavaggio/immissione della miscela combustibile. Questi motori vengono usati nella configurazione diesel come motorizzazione sulle navi. Recentemente tali motori navali sono stati sviluppati anche per poter essere alimentati a LNG (Gas naturale liquefatto)[25][26]
Durante la metà dei anni '90 alcune case automobilistiche produssero prototipi di motori a due tempi, tra cui FIAT con un prototipo che utilizzava tecnologia Orbital e Ferrari con il motore F134.[27]
Gli ultimi studi su tale tipologia di motore, per via della sua versatilità, hanno portato alla luce progetti che potrebbero essere vincenti per il futuro, come ad esempio il motore omnivore della Lotus[28][29], alcuni dei quali riprendono soluzioni già usate in passato e hanno avuto sostegni economici da imprenditori non specializzati nel settore, come nel caso del motore della Ecomotors, sostenuto da Bill Gates e che secondo il costruttore potrebbe essere adoperato sulle autovetture[30][31]. Il 20 aprile 2011 ha annunciato il contratto per la commercializzazione con la Zhongding Holding (Group) Company o più semplicemente Zhongding, sia per i generatori che per autotrazione[32].
Il motore a due tempi tra i suoi pro o i suoi contro a seconda dell'utilizzo, ha poco freno motore a causa delle minori parti meccaniche di cui è composto e che oppongono resistenza al movimento rispetto ad un motore a quattro tempi, per questo motivo il rendimento meccanico è migliore. Nelle applicazioni urbane questa caratteristica è più un punto a sfavore, dato che avendo meno freno motore i freni meccanici devono essere sollecitati maggiormente portando naturalmente ad una loro più rapida usura.
Questo tipo di motorizzazione, in passato, oltre ad avere una vasta applicazione motociclistica, ha visto applicazione anche su mezzi pesanti e autoveicoli[34].
Essa è attualmente impiegata su motocicli di media-piccola cilindrata, generalmente pari o inferiore a 300 cm³ (250, 125 e 50) in quanto la semplicità costruttiva ed il ridotto costo di produzione la rende preferibile al 4 tempi, che richiede più manutenzione in quanto le parti in moto sono di più (albero a camme, valvole, catena di distribuzione, ecc.), ma sussistono eccezioni come L'ATK Intimidator con motore da 620 e 700 cm³ .
Una valida evoluzione del motore a due tempi (già usata per i mezzi marini e nelle motoslitte) è stata recentemente proposta da due case motociclistiche che hanno adottato al posto del tradizionale carburatore, un sistema di iniezione diretta della benzina nel cilindro (Iniezione nei ciclomotori), mentre la pioniera in questo campo fu nota casa riminese con un motociclo da strada di carattere sportivo di 500 cm³ bicilindrico.
Il vantaggio di questo sistema è un totale abbattimento dei consumi poiché essendoci un ciclo controllato da una centralina elettronica, la benzina viene iniettata direttamente nel cilindro in quantità calibrata e dosata, evitando così di passare per i travasi e per il carter dell'albero, dove comunque si perde una minima quantità di carburante, che i deposita sulle pareti. Quest'alimentazione inoltre permette di ridurre in maniera drastica gli inquinanti emessi dal motore a due tempi, in cui la combustione non è mai perfetta per via dell'olio e con il lavaggio una parte del carburante immesso va persa, mentre con l'iniezione diretta gran parte del carburante partecipa alla combustione. Questo sistema permette quindi d'avere una potenza specifica leggermente superiore (dato che il lavaggio avviene con sola aria e olio, consentendo un maggior riempimento di comburente nel cilindro), ma si ha soprattutto un aumento del rendimento energetico (consumo specifico minor.e)
Il bicilindrico 500 cm³, modello piuttosto raro ad oggi, aveva un motore a V di 90° da 110 CV ad iniezione elettronica diretta con 2 iniettori per cilindro. Nonostante la bontà del progetto che prevedeva un pesante aiuto dell'elettronica, per semplicità la casa ha poi preferito ripiegare sui carburatori, dati i problemi iniziali legati a questo sistema, molto complicatoama poco studiato e sviluppato, che portava in alcuni casi a far spaccare i pistoni.
Attualmente il motore a due tempi trova valida applicazione nel campo navale su motori di enorme cilindrata dove la fase passiva del lavaggio viene rimossa in quanto ne sopperisce il funzionamento un sistema di turbocompressione dove i gas di scarico alimentano una turbina che fa girare un compressore che comprime l'aria fresca e l'invia tramite appositi condotti ai cilindri.
Questa sua caratteristica vale anche per i motori dei fuoribordo, grazie alla loro migliore funzionalità, anche se dal 2005 sempre più costruttori producono motori a quattro tempi per fuoribordo.[35]
Nel corso degli anni la motorizzazione a due tempi è stato proposta in vari frazionamenti:
Utilizzato sulla maggior parte delle moto 2T e sulla totalità di quelle prodotte ai giorni d'oggi, dove le cilindrate prodotte vanno dai piccoli 50 cm³ per ogni categoria di moto al 700 prodotto dalla tedesca Zbel utilizzato per il sidecarcross.
Utilizzato con cilindrate tra i 250 e i 500 cm³ solo sulle moto stradali come l'Aprilia RS 250, la Bimota VDue 500 e la Yamaha RD 350, bicilindrica frontemarcia dalle prestazioni notevoli, costi tutto sommato contenuti e nota per il suo motore potente e robusto, richiedeva però un'accurata messa a punto della ciclistica. Notevoli erano pure i bicilindrici 125 di Benelli e Malanca commercializzate a cavallo tra gli anni '70 e i primi '80.
Utilizzato soprattutto negli anni sessanta-settanta su motociclette stradali di cilindrata medio-alta, come la Kawasaki 500 H1, la Suzuki GT 750 o la Motobécane 350 L3.
Negli anni ottanta ricordiamo la Honda NS, da 500 cm³ nella versione da Gran Premio e 400 cm³ in quella stradale, entrambe mosse da tricilindrici a V di 90°. Lo schema era già utilizzato dalla DKW per le sue moto da GP degli anni cinquanta.
Nel 1967 venne prodotta la Saab Sonett, con motore tricilindrico a due tempi[36]
Utilizzato sulle vecchie moto della classe 500, come la Suzuki RG 500, l'Honda NSR 500, la Yamaha YZR 500 e la Cagiva C594, mentre nella classe 125 si ha la Yamaha RA31 del '67, con i cilindri a V.
Su moto stradali è comparso solo in sporadici ma significativi casi, come sulla Suzuki RG-Γ 500, in pratica una replica stradale delle motociclette di Hamamatsu utilizzate nella classe maggiore, dove lo schema del motore era denominato "in quadrato", il motore, cioè, si componeva idealmente di due bicilindrici frontemarcia uno dietro l'altro. Degna di nota anche la coeva Yamaha RD 500, con disposizione dei cilindri a V.
Utilizzato nella versione con alimentazione diesel come propulsore per il carro armato Chieftain.
L'unica realizzazione di questi tipo, tra i motori a due tempi, è la Galbusera 500 V8, presentata alla XIX Esposizione del ciclo e motociclo di Milano e progettata da Adolfo Marama Toyo, che disponeva di un propulsore 8 cilindri a V trasversale accoppiati.
This article uses material from the Wikipedia article "Motore a due tempi", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD