powered by CADENAS

Social Share

Ferrosilicon (11332 views - Material Database)

Ferrosilicon is a ferroalloy, an alloy of iron and silicon with an average silicon content between 15 and 90 weight percent. It contains a high proportion of iron silicides.
Go to Article

Ferrosilicon

Ferrosilicon

Ferrosilicon is a ferroalloy, an alloy of iron and silicon with an average silicon content between 15 and 90 weight percent. It contains a high proportion of iron silicides.[1]

Production and reactions

Ferrosilicon is produced by reduction of silica or sand with coke in the presence of iron. Typical sources of iron are scrap iron, millscale. Ferrosilicons with silicon content up to about 15% are made in blast furnaces lined with acid fire bricks. Ferrosilicons with higher silicon content are made in electric arc furnaces. The usual formulations on the market are ferrosilicons with 15%, 45%, 75%, and 90% silicon. The remainder is iron, with about 2% consisting of other elements like aluminium and calcium. An overabundance of silica is used to prevent formation of silicon carbide. Microsilica is a useful byproduct. There are quite a few manufacturers mainly in Andhra Pradesh namely Kalpataru Global Alloys Pvt Ltd and in Bhutan, Meghalaya, etc

A mineral perryite is similar to ferrosilicon, with its composition Fe5Si2. In contact with water, ferrosilicon may slowly produce hydrogen. The reaction, which is accelerated in the presence of base, is used for hydrogen production. The melting point and density of ferrosilicon depends on its silicon content.

Physical properties of ferrosilicon
Si content (wt.%) 0% 20% 35% 50% 60% 80% 100%
Melting point (°C) 1538° 1210° 1210° 1210° 1230° 1360° 1414°
Density (g/cm3) 7.87 6.76 5.65 5.1 4.27 3.44 2.33
Source: Materials Science and International Team[2]

Uses

Ferrosilicon is used as a source of silicon to reduce metals from their oxides and to deoxidize steel and other ferrous alloys. This prevents the loss of carbon from the molten steel (so called blocking the heat); ferromanganese, spiegeleisen, silicides of calcium, and many other materials are used for the same purpose.[3] It can be used to make other ferroalloys. Ferrosilicon is also used for manufacture of silicon, corrosion-resistant and high-temperature resistant ferrous silicon alloys, and silicon steel for electromotors and transformer cores. In the manufacture of cast iron, ferrosilicon is used for inoculation of the iron to accelerate graphitization. In arc welding, ferrosilicon can be found in some electrode coatings.

Ferrosilicon is a basis for manufacture of prealloys like magnesium ferrosilicon (MgFeSi), used for production of ductile iron. MgFeSi contains 3–42% magnesium and small amounts of rare earth metals. Ferrosilicon is also important as an additive to cast irons for controlling the initial content of silicon.

Magnesium ferrosilicon is instrumental in the formation of nodules, which give ductile iron its flexible property. Unlike gray cast iron, which forms graphite flakes, ductile iron contains graphite nodules, or pores, which make cracking more difficult.

Ferrosilicon is also used in the Pidgeon process to make magnesium from dolomite. Treatment of high-silicon ferrosilicon with hydrogen chloride is the basis of the industrial synthesis of trichlorosilane.

Hydrogen production

Ferrosilicon is used by the military to quickly produce hydrogen for balloons by the ferrosilicon method. The chemical reaction uses sodium hydroxide, ferrosilicon, and water. The generator is small enough to fit in a truck and requires only a small amount of electric power, the materials are stable and not combustible, and they do not generate hydrogen until mixed.[4] The method has been in use since World War I. A heavy steel pressure vessel is filled with sodium hydroxide and ferrosilicon, closed, and a controlled amount of water is added; the dissolving of the hydroxide heats the mixture to about 200 °F (93 °C) and starts the reaction; sodium silicate, hydrogen and steam are produced.[5]

  1. ^ Rudolf Fichte (2005), "Ferroalloys", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a10_305 
  2. ^ Materials Science and International Team (2008). Selected Systems from C-Cr-Fe to Co-Fe-S. Springer. p. 22 (Fig. 2 – Phase diagram of the Fe-Si system). ISBN 978-3-540-74193-0. doi:10.1007/978-3-540-74196-1_12. Retrieved 25 December 2011. 
  3. ^ Ramesh Singh (3 October 2011). Applied Welding Engineering: Processes, Codes, and Standards. Elsevier. pp. 38–. ISBN 978-0-12-391916-8. Retrieved 25 December 2011. 
  4. ^ Report No 40: The ferrosilicon process for the generation of hydrogen
  5. ^ Candid science: conversations with famous chemists, István Hargittai, Magdolna Hargittai, p. 261, Imperial College Press (2000) ISBN 1-86094-228-8

Further reading


AlGaAlnicoAlluminioLeghe di alluminioCupralluminiAl-LiBronzo arsenicaleRame arsenicaleBell metalBerillioBeryllium copperBiglioneBirmabrightBismanolBismutoOttone (lega)BronzoCalamine brassChinese silverCromoChromium hydrideCobaltoColored goldCostantanaRameCopper hydrideCopper–tungstenCorinthian bronzeCrown goldCunifeCupronichelCymbal alloysLega di DevardaDuralluminioDutch metalElettroElinvarFernicoFerrolegaFerroceriumFerrochromeFerromanganeseFerromolybdenumField's metalFlorentine bronzeGalfenolGalinstanoGallio (elemento chimico)Gilding metalVetroGlucydurOroGuanín (bronze)GunmetalHepatizonHiduminiumHydronaliumIndioFerroItalmaPiomboMagnaliumMagnesioManganinaMegalliumMelchior (alloy)MercuryMolybdochalkosMuntz metalNichromeNichelAlpaccaOro nordicoOrmoluPhosphor bronzePrincisbeccoMaterie plastichePlexiglasPlutonioPotassioRhoditeRodioRose's metalSamarioScandioShakudōArgentoSodioSpeculum metalAcciaio inossidabileAcciaioStelliteAcciaio strutturaleStagno (elemento chimico)TitanioTombacTumbagaUranioVitalliumWood's metalY alloyZincoZirconioFerrotitanioFerrouraniumInvarGhisaIron–hydrogen alloyPig ironKanthal (alloy)KovarStaballoySpiegeleisenBulat steelCrucible steel41xx steelAcciaio DamascoMangalloyAcciaio super rapidoMushet steelAcciaio MaragingHigh-strength low-alloy steelReynolds 531Electrical steelAcciaio armonicoAL-6XNCelestriumAlloy 20AISI 316Martensitic stainless steelSanicro 28Acciaio chirurgicoZeron 100Silver steelTool steelAcciaio CortenWootz steelSolderTerneLega tipograficaElektronAmalgamaMagnoxAlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNitinolMu-metalPermalloySupermalloyNickel hydridePlutonium–gallium alloyNaKMischmetalLitioTerfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichiArgento sterlingArgento tibetanoTitanium Beta CTitanium alloyIdruro di titanioGum metalTitanium goldNitruro di titanioBabbitt (alloy)Britannia metalPeltroQueen's metalMetallo biancoIdruro di uranioZamakZirconium hydrideIdrogenoElioBoroAzotoOssigenoFluoroMetanoMezzanino (architettura)Atomo

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification