powered by CADENAS

Social Share

Galfenol (8712 views - Material Database)

In materials science, galfenol is the general term for an alloy of iron and gallium. The name was first given to iron-gallium alloys by United States Navy researchers in 1998 when they discovered that adding gallium to iron could amplify iron's magnetostrictive effect up to tenfold. Galfenol is of interest to sonar researchers because magnetostrictor materials are used to detect sound, and amplifying the magnetostrictive effect could lead to better sensitivity of sonar detectors. Galfenol is also proposed for vibrational energy harvesting, actuators for precision machine tools, active anti-vibration systems, and anti-clogging devices for sifting screens and spray nozzles. Galfenol is machinable and can be produced in sheet and wire form. In 2009, scientists from Virginia Polytechnic Institute and State University, and National Institute of Standards and Technology (NIST) used neutron beams to determine the structure of galfenol. They determined that the addition of gallium changes the lattice structure of the iron atoms from regular cubic cells to one in which the faces of some of the cells become slightly rectangular. The elongated cells tend to clump together in the alloy, forming localized clumps within the material. These clumps have been described by Peter Gehring of the NIST Center for Neutron Research as "something like raisins within a cake".
Go to Article

Galfenol

Galfenol

In materials science, galfenol is the general term for an alloy of iron and gallium. The name was first given to iron-gallium alloys by United States Navy researchers in 1998 when they discovered that adding gallium to iron could amplify iron's magnetostrictive effect up to tenfold. Galfenol is of interest to sonar researchers because magnetostrictor materials are used to detect sound, and amplifying the magnetostrictive effect could lead to better sensitivity of sonar detectors.[1] Galfenol is also proposed for vibrational energy harvesting, actuators for precision machine tools, active anti-vibration systems, and anti-clogging devices for sifting screens and spray nozzles. Galfenol is machinable and can be produced in sheet and wire form.[2][3]

In 2009, scientists from Virginia Polytechnic Institute and State University, and National Institute of Standards and Technology (NIST) used neutron beams to determine the structure of galfenol. They determined that the addition of gallium changes the lattice structure of the iron atoms from regular cubic cells to one in which the faces of some of the cells become slightly rectangular. The elongated cells tend to clump together in the alloy, forming localized clumps within the material. These clumps have been described by Peter Gehring of the NIST Center for Neutron Research as "something like raisins within a cake".[1]

See also


AlGaAlnicoAluminijAluminium alloyAluminium bronzeAluminium-lithium alloyArsenical bronzeArsenical copperBell metalBerilijBeryllium copperBillon (alloy)BirmabrightBismanolBizmutMjedBroncaCalamine brassChinese silverKromChromium hydrideKobaltKonstantan (legura)Bakar (element)Copper hydrideCopper–tungstenCorinthian bronzeCunifeKuproniklCymbal alloysDevarda's alloyDuraluminijDutch metalElektrumFlorentine bronzeGalijGilding metalStakloGlucydurZlatoGuanín (bronze)GunmetalCrna korintska broncaHiduminiumHydronaliumIndijŽeljezoItalmaOlovo (element)MagnalijMagnezijManganinMegalliumMelchior (alloy)MercuryMolybdochalkosMuntz metalNichromeNikalNovo srebroNordijsko zlatoOrmoluPhosphor bronzePinchbeck (alloy)PlastikaPlexiglasPlutonijKalijRodijRose's metalSamarijSkandijShakudoSrebroNatrijSpeculum metalNehrđajući čelikČelikStelliteKonstrukcijski čelikKositarTitanijTombacTumbagaUranijVitalliumWood's metalY alloyCinkCirkonijGalinstanColored goldRhoditeCrown goldElinvarField's metalFernicoFeroslitineFerroceriumFerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumInvarLijevano željezoIron–hydrogen alloySirovo željezoKanthal (alloy)KovarStaballoySpiegeleisenBulat steelČelični lijev41xx steelDamascirani čelikMangalloyBrzorezni čelikMushet steelMaraging čelikMikrolegirani čelikReynolds 531Electrical steelČelik za oprugeAL-6XNCelestriumAlloy 20Marine grade stainlessMartensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelAlatni čelikCOR-TEN čelikWootz steelSolderTerneType metalElektron (alloy)Amalgam (kemija)Magnox (alloy)AlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNickel titaniumMu-metalPermalloySupermalloyNickel hydridePlutonium–gallium alloySodium-potassium alloyMischmetalLitijTerfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichiSterling silverTibetan silverTitanium Beta CTitanijeve legureTitanium hydrideGum metalTitanium goldTitanijev nitridBabbitt (alloy)Britanija metalTvrdi kositarQueen's metalWhite metalUranium hydrideZamakZirconium hydrideVodikHelijBor (element)DušikKisikFluorMetanMezzanineAtom

This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification