Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Aluminium–lithium alloys (Al-Li) are a series of alloys of aluminium and lithium, often also including copper and zirconium. Since lithium is the least dense elemental metal, these alloys are significantly less dense than aluminium. Commercial Al–Li alloys contain up to 2.45% by weight of lithium.[1]
Alloying with lithium reduces structural mass by three effects:
The crystal structure for Al3Li and Al–Li, while based on the FCC crystal system, are very different. Al3Li shows almost the same size lattice structure as pure aluminium except lithium atoms are present in the corners of the unit cell. The Al3Li structure is known as the AuCu3, L12, or Pm3m and has a lattice parameter of 4.01 Å.[3] The Al–Li structure is known as the NaTl, B32, or Fd3m structure which is made of both lithium and aluminium assuming diamond structures and has a lattice parameter of 6.37 Å. The interatomic spacing for AlLi (3.19 Å) is smaller than either pure lithium or aluminium.[5]
Al–Li alloys are primarily of interest to the aerospace industry due to the weight advantage they provide. They are currently used in a few commercial jetliner airframes, the fuel and oxidizer tanks in the SpaceX Falcon 9 launch vehicle, Formula One brake calipers, and the AgustaWestland EH101 helicopter.[6]
The third and final version of the US Space Shuttle's external tank was principally made of Al-Li 2195 alloy.[7] In addition, Al–Li alloys are also used in the Centaur Forward Adapter in the Atlas V rocket,[8] in the Orion Spacecraft, and were to be used in the planned Ares I and Ares V rockets (part of the cancelled Constellation program).
Al-Li alloys are generally joined by friction stir welding. Some Al–Li alloys, such as Weldalite 049, can be welded conventionally; however, this property comes at the price of density; Weldalite 049 has about the same density as 2024 aluminium and 5% higher elastic modulus.[citation needed]
Although Aluminum-Lithium alloys are generally superior to Aluminum-Copper or Aluminum-Zinc alloys in ultimate strength to weight ratio, their poor fatigue strength under compression remains a problem which is only partially solved as of 2016.[9][10] Also, high costs (around 3 times or more conventional Aluminum alloys), poor corrosion resistance and strong anisotropy of mechanical properties of rolled Aluminum-Lithium products has resulted in the paucity of the applications.
On single-aisle airliners, Arconic (ex Alcoa) claims up to 10% weight reduction compared to composites leading to up to 20% better fuel economy, at a lower cost than titanium or composites. Al-Li is used on on the Airbus A380 and A350, Boeing 787 and Bombardier CSeries airliners, and on Gulfstream G650 and Bombardier Global 7000/8000 business jets.[11]
Key world producers of Aluminium-lithium alloy products are Alcoa, Constellium and Kamensk-Uralsky Metallurgical Works.
This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification