Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Free Art License (Alchemist-hp (talk) (www.pse-mendelejew.de)).
Željezo | ||
---|---|---|
| ||
Osnovna svojstva | ||
Kemijski element Simbol Atomski broj |
Željezo Fe 26 | |
Kemijska skupina | prijelazni metali | |
Grupa, perioda, Blok | 8, 4, d | |
Izgled | sivkasta krutina | |
Gustoća1 | 7874 kg/m3 | |
Tvrdoća | 608 MPa (HV), 490 MPa (HB), 4,0 (Mohsova skala) | |
Specifični toplinski kapacitet (cp ili cV)2 |
(25 °C) 25,10 J mol–1 K–1 | |
Talište | 1538 °C | |
Vrelište3 | 2862 °C | |
Toplina taljenja | 13,81 kJ mol-1 | |
Toplina isparavanja | 340 kJ mol-1 | |
1 pri standardnom tlaku i temperaturi | ||
Atomska svojstva | ||
Atomska masa | 55,845(2) | |
Elektronska konfiguracija | [Ar] 3d6 4s2 |
Željezo je kemijski element koji u periodnom sustavu elemenata nosi simbol Fe, atomski (redni) broj mu je 26, a atomska masa mu iznosi 55,845(2) .
Simbol Fe dolazi od ferrum, latinskog naziva za željezo. Ferat je naziv za željezo u anionskom kompleksu. Telursko željezo je naziv za elementarno željezo, koje je nastalo u Zemljinoj kori.
Željezo, kad je potpuno čisto, srebrnkastog je sjaja i mekano. Poznato je od pradavnih vremena, a danas sigurno najvažniji tehnički metal koji se upotrebljava na mnogo načina. Najvažnije je od svih metala i uglavnom se koristi kao čelik, u kojem ima ugljika (do 2,06%). Željezo hrđa na vlažnom zraku i otapa se u razrijeđenim kiselinama. Željezo je prijelazni metal 8. skupine periodnog sustava elemenata.
Željezo u prirodi najčešće dolazi kao mineral magnetit. Kristalizira u obliku crnih kubičnih kristala.
U Zemljinoj kori najrasprostranjeniji metalni element i po masenom udjelu odmah je iza aluminija. U Zemljinoj kori udio je željeza oko 5%, a u cijeloj Zemlji se računa da je 37%. Najdublja unutrašnjost Zemlje se pretežno od njega i sastoji. Koncentracija željeza u morima je vrlo mala (oko 4x10-3 ppm).
Elementarno željezo se u prirodi nalazi samo kao meteorno, dospjelo na zemlju iz Svemira i telurno prisutno u Zemljinoj kori od iskonskih vremena. Prisutnost željeza utvrđena je i u sastavu Sunca, Mjesečevim stijenama i drugim nebeskim tijelima gdje ga ima oko 14,3%, kako svjedoče meteoriti pali na Zemlju od kojih se polovina sastoji pretežno od željeza.
Na površini Zemlje prirodno željezo je samo izuzetno u elementarnom stanju (telurno željezo na otoku Disko, zapadno od Grenlanda).
Podrobniji članci o temama: Alotropije željeza i Izotopi željeza
U elementarnom stanju čisto je željezo: srebrnobijeli, razmjerno mekan, kovan (kovak) metal, kemijski dosta otporan. Također, ono je i feromagnetično, što znači da zadržava magnetska svojstva i prestankom djelovanja magnetskog polja.
Željezo je kemijski vrlo reaktivno i kao neplemeniti metal otapa se u neoksidirajućim kiselinama. Na zraku je vrlo nestabilno i relativno brzo oksidira (korozija). U oksidirajućim kiselinama (koncentriranoj sumpornoj i dušičnoj kiselini) površina željeza se ne otapa, nego pasivizira stvaranjem zaštitnog sloja.
Kristalna mu se struktura mijenja s promjenom temperature.
Čisto elementarno željezo (Fe°) ima 3 kristalne forme (alotropske modifikacije):
Alfa-željezo je feromagnetično do Curieve temperature od 770 °C (1043 K). Pri temperaturi 770 °C gubi feromagnetska svojstva, ali ne mijenja strukturu, pa se ponekad pogrešno naziva i beta-željezo.
Željezo ima 9 izotopa (maseni broj od 52 do 60) i četvrti je element po udjelu u zemljinoj kori. U prirodi se željezo nalazi kao smjesa četiri stabilna izotopa: željezo-54 (5,8%), željezo-56 (91,72%), željezo-57 (2,2%) i željezo-58 (0,28%), a ostali su izotopi radioaktivni, s kratkim vremenom poluraspada, osim izotopa željezo-60 (t1/2 = 3x105 godina). Izotop željezo-56 poznat je kao nuklid s najstabilnijom jezgrom, jer ima najveću nuklearnu energiju vezanja.
Kao biogeni element, željezo spada u grupu esencijalnih elemenata gdje sudjeluje u prijenosu kisika. Željezo je važno za život biljaka i životinja i nalazi se u sastavu hemoglobina i kloroplasta u krvi, pa ga mora sadržavati hrana toplokrvnih životinja, kao i zemlja u kojoj rastu biljke. U organizmu odraslog čovjeka ima oko 5,85 grama željeza; od toga je 55% vezano za hemoglobin, 10% ga je u mioglobinu i 17% u staničnim heminima; oko 17% željeza nalazi se i u drugim organima (kao feritin i hemosiderin). Preparati željeza ubrajaju se u najstarija ljekovita sredstva; bili su poznati već u rimsko vrijeme. Danas se željezo u obliku topljivih ferosoli najviše upotrebljava za liječenje raznih oblika anemija. Manjak željeza dovodi do anemije, a višak može izazvati oštećenje jetre i bubrega. Za neke spojeve željeza se sumnja da su kancerogeni. [2]
Sitnije čestice željeza mogu na zraku i gorjeti, pri čemu frcaju iskre usijanog oksida, a u sasvim finom razdjeljenju željezo je i piroforno, tj. samozapaljivo na zraku. S usijanim željezom vodena para reagira uz postanak oksida Fe3O4 (magnetit) i vodika. Na visokoj temperaturi željezo se direktno spaja s klorom i sa sumporom. U razrijeđenim se kiselinama tehničko željezo lako otapa. Koncentrirana sumporna kiselina ga ne nagriza (stoga se ona može spremati i prevoziti u željeznim posudama), a u koncentriranoj dušičnoj kiselini željezo postaje pasivno.
Željezo izravno reagira s većinom nemetala pri umjerenim temperaturama. Osim s kisikom reagira s ugljikom, sumporom, klorom, fosforom i drugima.
Oksidacijska stanja |
Predstavnici kemijskih spojeva |
---|---|
−2 | rijetki - Na2[Fe(CO)4]; atomska ljuska d10 |
−1 | rijetki – [Fe2(CO)8]2; atomska ljuska d9 |
0 | [Fe(CO)5]; atomska ljuska d8 |
1 | rijetki – Na2[Fe(NO)(OH2)5]; atomska ljuska d7 |
2 (dvovalentno željezo) |
FeO, FeS2, Fe(OH)2, [Fe(OH2)6]2 + (voda), FeF2, [Fe(η-C5H5)2] itd.; atomska ljuska d6 |
3 (trovalentno željezo) |
Fe2O3, Fe3O4, FeF3, FeCl3, Fe(OH)(O), [Fe(OH2)6]3+ (voda) itd.; atomska ljuska d5 |
4 | rijetko, neki kompleksi; atomska ljuska d4 |
5 | [FeO4]3 (?); atomska ljuska d3 |
6 | K2[FeO4]; atomska ljuska d2 |
U kemijskim spojevima je željezo najčešće dvovalentno ili trovalentno (fero- i feri- spojevi).
Željezo pravi spojeve u kojima ima oksidacijski broj +2, +3 i +6, a u najvažnijima i najvećem broju spojeva ima oksidacijski broj +2 (fero) i +3 (feri). Stanje +2 je najstabilnije. Šesterovalentno željezo je ferat ion FeO4 - koji je postojan samo u lužnatom mediju, a u kiselom mediju se raspada na Fe3+ i kisik, uz nešto ozona. [3]
Nestabilniji Fe2+ ion u vodenoj se otopini u prisustvu kisika lako oksidira u Fe3+ ion.
Željezo zbog svog negativnog standardnog elektrodnog potencijala Fe2+/Fe, otapa se u kiselinama uz razvijanje vodika.
Ioni Fe2+ i Fe3+ imaju izraženu sposobnost stvaranja kompleksa koordinacijskog broja 6. Otopina iona Fe2+ je svijetlo zelene boje. Otopina iona Fe3+ je žute boje, osim bromida koji je crvene. Dimetil-glioksim oboji otopinu Fe2+ iona u crveno.[4]
Od željezovih oksida važni su:
Željezo je najkorišteniji od svih metala i njegova proizvodnja čini 95% (maseno) od ukupne svjetske proizvodnje metala. Razlog tome je kombinacija niske cijene i pogodnih fizičkih svojstava, zbog čega je željezo neizostavni materijal u automobilskoj industriji, brodogradnji i graditeljstvu.
Tehničko željezo predstavlja redovito leguru željeza s većim ili manjim količinama ugljika, silicija, mangana, sumpora i fosfora, pa mu svojstva uvelike ovise o količini tih sastojina, odnosno primjesa. Dodacima drugih metala, kao kroma, titanija, molibdena, nikla, tantala, vanadija, kobalta, niobija, volframa i dr., svojstva željeza se mogu i dalje modificirati u širim granicama nego bilo kojeg drugog tehničkog metala. Stoga danas ima na tisuće vrsta tehničkih željeza za najrazličitije namjene. Tehničko željezo, osim vrsta koje su posebnim dodacima (napose nikla i kroma) učinjene kemijski otpornima (nehrđajući čelik), kemijski je manje otporno nego čisto. Ono na vlažnom zraku hrđa, tj. prevlači se slojem hidroksida koji ne štiti metal od daljeg nagrizanja. Željezo grijano na višu temperaturu pokriva se crvenom prevlakom oksida Fe3O4.
Podrobniji članak o temi: Čelik
Primjena željeza je prvenstveno u obliku čelika, a manje kao sirovog ili lijevanog željeza. Čelik je legura željeza s 0,05 do 2,06% ugljika. To je najvažniji tehnološki i konstrukcijski materijal, a do danas je poznato više od tisuću vrsta čelika. Odlikuju se velikom čvrstoćom, tvrdoćom, žilavošću, mogućnošću lijevanja i mehaničke obrade, te velikom elastičnošću.
Podrobniji članak o temi: Povijest metalurgije željeza
Arheološki dokazi upotrebe "meteoritskog željeza" za izradu sitnog nakita i oružja sežu do 5. tisućljeća pr.Kr., u današnjem Iranu i vrhovi koplja, koji datiraju iz 4. tisućljeća pr.Kr. iz drevnog Egipta. Zapisi hijeroglifima iz 2. stoljeća pr.n.e govore o "crvenom balonu s neba", što se odnosi na meteoritsko željezo. Ovo se je željezo koristilo kao ukrasni dio na vrhovima koplja. To željezo ljudi tada nisu dobivali lijevanjem ili taljenjem željeznih ruda, nego su ga obrađivali kao što su obrađivali kamen.
Negdje između 3. i 2. tisućljeća pr. Kr. pronalaze se ostaci obrađenog željeza u području Mezopotamije, Anatolije i Egipta. Ovakvi rani počeci obrađenog željeza razlikuju se od željeza meteoritskog porijekla, jer ne sadrže nikal u svom sastavu. Čini se da su ljudi tada ovo željezo koristili isključivo u religijske svrhe, a željezo je tada bilo vrijednije od zlata i vjerojatno je nastalo kao višak kod proizvodnje bronce.
Između 16. i 12. stoljeća pr. Kr. željezo se počinje snažnije koristiti; doduše i u to vrijeme bronca je se još uvijek snažno koristila. No od 1200. pr. Kr. počinje prijelaz brončanog doba u željezno doba. Smatra se da ovaj prijelaz ljudskog društva nije potaknula premoć i kvaliteta jednog materijala nad drugim, nego nedostatak kositra (koji je naime neophodan za dobivanje bronce). Ovi prvi koraci obrade željeza na počecima željeznog doba uključivali su i korištenje drvenog ugljena tijekom obrade, a rezultat ovakve obrade željeza bio je prvi proizvedeni čelik (površinski sloj željeza). Hlađenjem ovako obrađenog željeza (u pravilu pomoću neke tekućine) dobiveni materijal dobivao je elastičnost i čvrstoću, koja je bila nadmoćna osobinama nad broncom.
Željezo se počelo dobivati iz ruda, najvjerojatnije hematita (Fe2O3), oko 1500. pr. Kr., najprije u Anatoliji, današnjoj Maloj Aziji, kao tzv. “spužvasto željezo”. U to vrijeme, zbog nedovoljne temperature primitivnih peći, nije bilo moguće dobivanje lijevanog željeza, već je nastajalo “spužvasto željezo”, koje se kovanjem pretvaralo u upotrebljiv metal. Nalazišta u Uru (Irak), te u Egiptu svjedoče o ranom dobivanju željeza iz ruda. Željezo je u to vrijeme bilo nevjerojatno važan strateški materijal. Smatra se, da je pleme Hetita iz Male Azije postiglo svoju veliku vojnu moć upravo zbog rane proizvodnje željeznog oružja. U to je vrijeme cijena željeza bila veća od cijene zlata, a način njegovog dobivanja čuvao se kao najstroža tajna.
U staroj Grčkoj željezno doba počinje oko 1300. pr. Kr., a 1200. pr. Kr. željezo je već poznato u čitavom “starom svijetu”. Očvršćavanje željeza zakaljivanjem bilo je poznato oko 900. pr. Kr, a također i oporavljanje (popuštanje) zagrijavanjem. O tome svjedoče nalazi i pisani dokumenti iz Rima, Halstatta (Njemačka) i La Tene (Francuska).
Željezo je čovjeku bilo poznato već u prapovijesnim vremenima, a danas je ono kudikamo najvažniji tehnički metal. Od njega se prave mostovi, željeznice, strojevi, brodovi, građevine, itd. kao i bezbroj sitnica potrebnih u svakodnevnom životu: igle, čavli, vijci, pera, kvačice za spise, kutije za konzerve itd.
Za dobivanje željeza danas se uglavnom koriste oksidne, a rjeđe karbonatne rude. Crvena željezna ruda sadrži mineral hematit. Druge rude sadrže mineral magnetit, koji je crne boje i magnetičan. Željezo rijetko nalazimo u elementarnom obliku koji se nalazi u okolici vulkana i u meteorima. Velike količine željeza korištene od željeznog doba, u prvom tisućljeću prije Krista, dobivene su taljenjem željeznih minerala, kao što je hematit.
Iz oksidnih ruda željezo se dobiva redukcijom ruda koksom, odnosno ugljikovim(II) oksidom (ugljikov monoksid) u visokim pećima. Iz ruda koje su siromašne željezom (npr. limonita), željezo se dobiva tzv. kiselim taljenjem i Kruppovim postupkom.
Kroz gornji otvor visoke peći (grotlo), peć se naizmjenično puni slojevima koksa i rude s talioničkim dodacima. Ovisno o rudi, talionički dodatak je vapnenac ili dolomit (ako su rude kisele, jer jalovine sadrže silikate i aluminijev oksid) ili kvarcni pijesak (ako su rude alkaline, jer jalovine sadrže kalcijev oksid). Najdonji sloj koksa se zapali, a dovodi mu se vruć zrak (do 800 °C) obogaćen kisikom. Pri tom koks izgara dajući najprije CO2, a zatim prolaskom kroz sljedeći sloj koksa prelazi u CO:
Nastali ugljikov(II) oksid (ugljikov monoksid) glavno je redukcijsko sredstvo koje postupno, ovisno o temperaturi pojedinih zona peći, sve više reducira okside željeza, dok konačno ne nastane tzv. spužvasto željezo, a sve reakcije se sumarno mogu svesti na:
Reakcijama oslobođeni CO2 (koji nastaje raspadom karbonata) reagira s ugrijanim koksom dajući ponovo CO, koji se u manje vrućim dijelovima peći raspada na CO2 i fino dispergirani ugljik, koji se otapa u spužvastom željezu. Ugljik tako snizuje talište reduciranog željeza na 1100 - 1200 °C. Rastaljeno željezo se, zbog veće gustoće, slijeva polagano u donji dio peći i skuplja se na dnu odakle se ispušta u kalupe ili vagonete kojima se odvozi na daljnju preradu. Tekuća i lakša troska pliva na rastaljenom željezu i ispušta se kroz nešto više smješten ispust.
Proizvodi koji nastaju u visokoj peći su:
Sirovo željezo je zbog većeg sadržaja nečistoća i ugljika, jako krhko i nepodesno za obradu ili primjenu. Može se koristiti samo za lijevanje najgrubljih masivnih predmeta (npr. postolja), koji nisu mehanički ili toplinski opterećeni. Da bi se dobilo kvalitetnije željezo ili čelik, sirovo se željezo prerađuje, što uključuje smanjenje sadržaja svih primjesa i podešavanje željenog sadržaja ugljika, koji bitno određuje kvalitetu čelika. Čelikom se smatra legura željeza od 0,05 do 2,06% ugljika. Pročišćeno sirovo željezo koje sadrži više od 1,7%, a manje od 2,5% ugljika obično zovemo lijevano željezo, a koristi se za izradu masivnijih željeznih odljevaka za razna postolja, nosače, kostrukcijsko i građevinsko željezo itd. Mješanjem sirovog željeza s talinom kvarcnog pijeska i pretaljivanjem te smjese u pećima obloženim Fe2O3, u talini se dobiva spužvasto, porozno željezo, u kojem prisutni Fe2O3 oksidira većinu primjesa. Dobiva se tzv. profilno željezo jer se direktno iz peći, pod tlakom koji istiskuje silikatnu masu s otopljenim primjesama, izvlače profilni proizvodi željeza (cijevi, tračnice, šipke itd.).
Primjese znatno utječu na fizikalna svojstva željeza. Talište čistog željeza je 1535°C, a željeza sa svega 0,83% ugljika 740°C. Sastav sirovog željeza:
w(Fe) = 90%,
w(C) = 2 - 5%,
w(Si) = 0,2 – 4%,
w(P) = 0,1 – 3%,
w(Mn) = 1,5 – 6%,
w(S) = 0,01 – 0,05%.
Postoji više postupaka prerade željeza u čelike, a najčešći su: [5]
Željeza ima u sastavu Mjeseca, Sunca i drugih nebeskih tijela kao i na Zemlji gdje je najrasprostranjeniji metal. Zemljina se jezgra najvećim dijelom sastoji od kovinasta željeza, s nešto nikla, a upravo taj sastav željeza u vanjskoj tekućini jezgre i u njezinim čvrstim unutrašnjim dijelovima daje Zemlji njezino magnetno polje. Može se naći kao i mineral, ali rijetko, jer željezo se spremno spaja s kisikom i vodom pa stvara okside i druge minerale. Povremeno se nalazi u nekim promijenjenim bazaltima, gdje su željezni minerali svedeni na urođeno željezo.
Željezni cvijet ili željezni šešir nazivaju rudari dijelove ležišta željezne rude (pirita, hematita, magnetita, siderita), gdje su one prešle u limonite.
U prirodi (na mnogim mjestima Zemljine površine) spojeno se željezo nakupilo u većim koncentracijama, a stijene koje sadržavaju 20% i više željeza mogu služiti kao željezne rude. Najčešće i najvažnije rude od njih sadržavaju minerale hematit (Fe2O3 x H2O), najmanje zastupljen limonit (FeO(OH) x nH2O) i magnetit (Fe3O4) koje su oksidne rude, te vrlo rašireni pirit (FeS2) koji je sulfidna ruda, te siderit (FeCO3) koja je karbonatna ruda. Vivijanit je kristal, željezni fosfat. Željezo još nalazimo i u silikatnim rudama (spojevima).
Sve rude se moraju pržiti prije preradbe u sirovo željezo da prijeđu u oksid. Iz rude se sirovo željezo dobiva preradbom u visokoj peći. Tako dobiveno sirovo željezo upotrebljava se manjim dijelom za proizvodnju predmeta lijevanjem, a većim dijelom prerađuje se u čelik.
Potraži Željezo u Wječniku, slobodnom rječniku. |
H | He | ||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | As | Br | Kr | ||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Te | I | Xe | |||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Rn | ||
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Fl | Uup | Lv | Uus | Uuo |
Alkalijski metali | Zemnoalkalijski metali | Lantanoidi | Aktinoidi | Prijelazni metali | Slabi metali | Polumetali | Nemetali | Halogeni elementi | Plemeniti plinovi |
This article uses material from the Wikipedia article "Željezo", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification