powered by CADENAS

Social Share

Elektricitet (23592 views - Industrial Markets)

Elektricitet (njem. Elektrizität, prema engl. electricity i franc. électricité < znanstv. lat. electricitas, izvedeno od electricus: električan, prema lat. electrum < grč. ἤλεϰτρον: jantar) je svojstvo tvari koje potječe od viška pozitivno ili negativno električki nabijenih čestica. Još u antičko vrijeme zapažena je pojava da jantar, kada ga se trlja, dobiva svojstvo privlačenja sitnih čestica. Godine 1600. engleski liječnik William Gilbert, prema grčkom nazivu za jantar (grč. ἤλεϰτρον), nazvao je natrte stvari s opisanim svojstvima električna tijela (lat. corpora electrica). Elektricitet se s jednoga tijela može prenositi na drugo. Količina elektriciteta naziva se električni naboj. U atomu je pozitivni naboj atomske jezgre jednak negativnomu naboju svih elektrona, odnosno broj protona jednak broju elektrona, pa se zato djelovanja tih naboja prema van međusobno poništavaju ili neutraliziraju. Tek kada se u nekom tijelu odvoji dio elektrona od atoma, dolaze do izražaja privlačne sile između pozitivnih i negativnih čestica. Te sile nastoje elektrone ponovno vratiti na ona mjesta u atomu na kojima su se prije nalazili. Zbog djelovanja tih sila dolazi do gibanja električki nabijenih čestica ili električne struje. Odvajanje elektrona od pripadnih atomskih jezgara čini temelj proizvodnje električne energije. U galvanskim člancima i akumulatorima razdvajanje elektriciteta izvode kemijske sile. Za dobivanje velike količine električne energije služe električni generatori. Elektroni lako prolaze kroz dobre električne vodiče (na primjer kovine), a teško kroz loše vodiče ili izolatore (na primjer zrak, kaučuk, porculan). Ako se vodič stavi u blizinu naelektriziranog tijela, to će tijelo, već prema vrsti svojega naboja, elektrone vodiča ili privući u što veću blizinu ili odbiti od sebe u najveću moguću daljinu. Taj način razdvajanja elektriciteta u vodiču naziva se influencija. Električni naboj je jedno od temeljnih očuvanih svojstava elementarnih čestica. Pojave vezane za naboj u mirovanju opisujemo granom fizike koju nazivamo elektrostatika. Naboj u mirovanju također nazivamo statičkim ili elektrostatičkim nabojem. Naboj u gibanju nazivamo električnom strujom, a povezane pojave opisujemo elektrodinamikom. Postojanje elektriciteta zapaža se u prostoru posredstvom elektromagnetskog polja koje nastaje oko naboja. Ako naboj miruje postoji samo električno polje, takozvano elektrostatsko polje. Naboj u pokretu stvara i magnetsku komponentu elektromagnetskog polja. Elektricitet je otkriven zapažanjem postojanja elektrostatskog polja (privlačenje sitnih predmeta) u blizini naelektriziranog štapića od jantara.
Go to Article

Elektricitet

Elektricitet

Elektricitet

Elektricitet (njem. Elektrizität, prema engl. electricity i franc. électricité < znanstv. lat. electricitas, izvedeno od electricus: električan, prema lat. electrum < grč. ἤλεϰτρον: jantar) je svojstvo tvari koje potječe od viška pozitivno ili negativno električki nabijenih čestica.

Još u antičko vrijeme zapažena je pojava da jantar, kada ga se trlja, dobiva svojstvo privlačenja sitnih čestica. Godine 1600. engleski liječnik William Gilbert, prema grčkom nazivu za jantar (grč. ἤλεϰτρον), nazvao je natrte stvari s opisanim svojstvima električna tijela (lat. corpora electrica). Elektricitet se s jednoga tijela može prenositi na drugo. Količina elektriciteta naziva se električni naboj.

U atomu je pozitivni naboj atomske jezgre jednak negativnomu naboju svih elektrona, odnosno broj protona jednak broju elektrona, pa se zato djelovanja tih naboja prema van međusobno poništavaju ili neutraliziraju. Tek kada se u nekom tijelu odvoji dio elektrona od atoma, dolaze do izražaja privlačne sile između pozitivnih i negativnih čestica. Te sile nastoje elektrone ponovno vratiti na ona mjesta u atomu na kojima su se prije nalazili. Zbog djelovanja tih sila dolazi do gibanja električki nabijenih čestica ili električne struje. Odvajanje elektrona od pripadnih atomskih jezgara čini temelj proizvodnje električne energije. U galvanskim člancima i akumulatorima razdvajanje elektriciteta izvode kemijske sile. Za dobivanje velike količine električne energije služe električni generatori.

Elektroni lako prolaze kroz dobre električne vodiče (na primjer kovine), a teško kroz loše vodiče ili izolatore (na primjer zrak, kaučuk, porculan). Ako se vodič stavi u blizinu naelektriziranog tijela, to će tijelo, već prema vrsti svojega naboja, elektrone vodiča ili privući u što veću blizinu ili odbiti od sebe u najveću moguću daljinu. Taj način razdvajanja elektriciteta u vodiču naziva se influencija. [1]

Električni naboj je jedno od temeljnih očuvanih svojstava elementarnih čestica. Pojave vezane za naboj u mirovanju opisujemo granom fizike koju nazivamo elektrostatika. Naboj u mirovanju također nazivamo statičkim ili elektrostatičkim nabojem. Naboj u gibanju nazivamo električnom strujom, a povezane pojave opisujemo elektrodinamikom. Postojanje elektriciteta zapaža se u prostoru posredstvom elektromagnetskog polja koje nastaje oko naboja. Ako naboj miruje postoji samo električno polje, takozvano elektrostatsko polje. Naboj u pokretu stvara i magnetsku komponentu elektromagnetskog polja. Elektricitet je otkriven zapažanjem postojanja elektrostatskog polja (privlačenje sitnih predmeta) u blizini naelektriziranog štapića od jantara.

Piezoelektricitet

Podrobniji članak o temi: Piezoelektrični učinak

Piezoelektrični efekt (grč. piezo - gurati) ili piezoelektrični učinak je pojava stvaranja električnog naboja na površini posebno odrezanog kristala (čvrsti dielektrik - izolator) koji je elastično deformiran vanjskom silom. Jedna strana (površina) tog kristala nabit će se negativno, a druga pozitivno. Dakle, kristal postaje električki polariziran. Polarizacija kristala je najveća kada je naprezanje usmjereno u pravcu piezoelektrične osi kristala. Promjenom smjera deformacije (tlak - vlak) dolazi do polarizacije obrnutog smjera. Piezoelektrični efekt otkrili su 1890. Jacques i Pierre Curie. Koristi se u senzorima tlaka. Najznačajniji piezoelektrični materijali su kvarc (SiO2), Seignettova sol, turmalin, topaz, kost, svila, drvo, te umjetni materijali poput raznih vrsta keramike, plastike i kristala, a u novije vrijeme PZT keramike. Iako je dugo nakon otkrića bio samo zanimljiv laboratorijski efekt, s vremenom je pronašao primjenu u brojnim uređajima. Prisutan je i obrnuti efekt: mehanička deformacija materijala kada je na njega primijenjen električni napon. [2]

  1. elektricitet, [1] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2017.
  2. [2] “Ispitivanje materijala”, doc. dr. sc. Stoja Rešković, Metalurški fakultet Sveučilišta u Zagrebu, www.scribd.com/doc, 2010.

Vanjske poveznice



This article uses material from the Wikipedia article "Elektricitet", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Industrial Markets

3D - 3D CAD - 3D Models - 3D Library - Mechanical Engineering - Maschinenbau , Architecture Engineering - Architektur - BIM, Electrical Engineering - Elektrotechnik, Mechatronic - Mechatronik, Plant Design - Anlagenbau, Marine - Offshore Onshore - Food Service - Interior Architecture Innenarchitektur - Furnitures Möbel - Automotive - IoT Internet Of Things Industry 4.0 Industrie 4.0 Digital Twin Manufacturing 2025 - Chemistry - Food Service - Landscape Architecture - Exterior Architecture