Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution 2.5 (Emoscopes).
Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références »
En pratique : Quelles sources sont attendues ? Comment ajouter mes sources ?
On peut définir la thermodynamique de deux façons simples : la science de la chaleur et des machines thermiques ou la science des grands systèmes en équilibre. La première définition est aussi la première dans l'histoire. La seconde est venue ensuite, grâce aux travaux pionniers de Ludwig Boltzmann.
Avec la physique statistique, dont elle est désormais une partie, la thermodynamique est l'une des grandes théories sur lesquelles se fonde la compréhension actuelle de la matière.
Les notions de chaleur et de température sont les plus fondamentales de la thermodynamique. Il est possible de définir la thermodynamique comme la science de tous les phénomènes qui dépendent de la température et de ses changements.
Chacun a une connaissance intuitive de la notion de température. Un corps est chaud ou froid, selon que sa température est plus ou moins élevée. Mais une définition précise est plus difficile. L’un des grands succès de la thermodynamique classique au XIXe siècle est d'avoir donné une définition de la température absolue d’un corps, qui a mené à la création de l'échelle kelvin. Celle-ci donne la température minimale pour tous les corps : zéro kelvin, soit −273,15 °C. Il s'agit du zéro absolu, dont le concept apparaît pour la première fois en 1702 avec le physicien français Guillaume Amontons.
La chaleur est plus difficile à définir. Une ancienne théorie, défendue notamment par Lavoisier, attribuait à un fluide spécial (invisible, impondérable ou presque) les propriétés de la chaleur, le calorique, qui circulerait d’un corps à un autre. Plus un corps est chaud, plus il contiendrait de calorique. Cette théorie est fausse au sens où le calorique ne peut pas être identifié à une quantité physique conservée. La thermodynamique définit la chaleur comme un transfert d'énergie désordonnée d'un système vers le milieu extérieur. En effet l'énergie thermique correspond à l'énergie cinétique de molécules se déplaçant et subissant des chocs de manière aléatoire (appelés mouvement brownien). L'énergie transférée est dite désordonnée au niveau microscopique, par opposition au transfert d'énergie ordonnée au niveau macroscopique réalisé par le biais d'un travail.
La thermodynamique classique a pris son essor comme science des machines thermiques ou science de la puissance motrice du feu.
Sadi Carnot a initié les études modernes des machines thermiques dans un mémoire fondateur, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (1824). Le cycle de Carnot, étudié dans ce mémoire, reste le principal exemple théorique d’étude des machines thermiques. Plutôt que « puissance motrice », on dit aujourd’hui que les machines thermiques fournissent un travail, et on s’interroge sur la façon d’utiliser la chaleur pour produire du travail continu.
La chaleur est produite par le mouvement des corps macroscopiques. Il suffit de frotter ses mains pour s’en rendre compte. Inversement, la chaleur peut mettre des corps macroscopiques en mouvement. On peut les appeler des machines à feu ou machines thermiques. Dans un système macroscopique, elles conservent leur mouvement tant qu’une différence de température entre une partie chaude et une partie froide est maintenue.
Cette section présente quelques exemples où la puissance thermique joue un rôle.
Définir la thermodynamique comme la science de l’équilibre des grands systèmes est une approche à la fois très rigoureuse et très générale.
Si l’on jette un même dé, bien équilibré, un grand nombre de fois, on est sûr par avance que les fréquences d’apparition de chacune des faces seront proches d'un sixième. Plus le nombre de lancers est grand, plus les fréquences sont égales parce que le dé « explore » également toutes les possibilités qui lui sont offertes. La même chose se produit si on verse une goutte de colorant dans un verre d’eau. Si on attend assez longtemps, le verre est devenu uniformément coloré parce que toutes les molécules ajoutées « explorent » également toutes les possibilités, les régions à l’intérieur du verre, qui leur sont offertes.
Ces observations peuvent être généralisées. Lorsqu’un système est très grand, et lorsqu’il y a un sens à parler de l’équilibre du système, on peut prédire avec certitude la destinée de l’ensemble alors même que les destinées des nombreux individus sont imprévisibles.
On sait aujourd’hui que les atomes, très petits, existent. Dans chaque échantillon de matière, il y a un très grand nombre d’atomes, par exemple des milliards de milliards dans un minuscule grain de sable. La physique des corps macroscopiques est donc toujours une physique des grands systèmes.
L’étude des équilibres thermiques a une immense portée. Toutes les formes de la matière (gaz, liquides, solides, semi-fluides...) et tous les phénomènes physiques (mécaniques, électriques et magnétiques, optiques...) peuvent être étudiés en raisonnant sur l’équilibre des grands systèmes. La thermodynamique, que l’on identifie alors plutôt à la physique statistique, est une des bases les plus solides sur laquelle est édifiée notre compréhension de la matière.
Principe zéro · Premier principe · Deuxième principe · Troisième principe |
Les deux principes les plus importants sont le premier et le second. On leur en ajoute parfois deux autres (principes zéro et troisième).
Les variables d'état sont des grandeurs (indépendantes) qui servent à définir le système et dont il suffit de fixer la valeur pour reconstituer un système exactement identique. Parmi les grandeurs physiques qui déterminent l'état thermodynamique d'un système, et peuvent donc servir de variable d'état, on distingue les variables extensives et intensives.
Un système peut toujours être divisé - par la pensée - en parties qui occupent des régions disjointes de l'espace.
Une variable d'état est extensive lorsque sa valeur pour le système entier est la somme de ses valeurs pour chacune de ses parties. Exemples :
Une variable d'état est intensive lorsque dans un système homogène sa valeur est la même pour le système entier et pour chacune de ses parties. Exemples :
Une grandeur physique peut aussi n'être ni extensive ni intensive, le carré du volume par exemple.
Les grandeurs extensives sont proportionnelles à la quantité de matière : volume, énergie interne, enthalpie, etc. Les grandeurs intensives sont indépendantes de la quantité de matière : pression, température, viscosité, etc.
This article uses material from the Wikipedia article "Thermodynamique", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
Physics, science