powered by CADENAS

Social Share

Moteur pas à pas (7361 views - Electrical Engineering)

Un moteur pas à pas permet de transformer une impulsion électrique en un mouvement angulaire. On trouve trois types de moteurs pas à pas : le moteur à réductance variable ; le moteur à aimants permanents ; le moteur hybride, qui est une combinaison des deux technologies précédentes.
Go to Article

Explanation by Hotspot Model

Moteur pas à pas

Moteur pas à pas

Pour les articles homonymes, voir PAP.

Un moteur pas à pas permet de transformer une impulsion électrique en un mouvement angulaire.

On trouve trois types de moteurs pas à pas :

  • le moteur à réductance variable[1] ;
  • le moteur à aimants permanents[2] ;
  • le moteur hybride, qui est une combinaison des deux technologies précédentes[3].

Historique

Le moteur pas à pas fut inventé en 1936 par Marius Lavet, un ingénieur français des Arts et Métiers, pour l'industrie horlogère[4].

Application

Ce type de moteur est très courant dans tous les dispositifs où l'on souhaite faire du contrôle de vitesse ou de position en boucle ouverte, typiquement dans les systèmes de positionnement et d'indexation.

L'usage le plus connu du grand public est dans les imprimantes classiques et imprimantes 3D, les scanner et les platines vinyle de DJ. Mais ils sont présents dans de nombreuses applications telles : les photocopieurs, imprimantes bancaires, robotique, instrumentation, pompes à perfusion, pousse-seringues, système de positionnement sur machine industrielle et machine-outil.

Moteur à réluctance variable

moteur pas à pas, type MRV

Les moteurs à réluctance variable (moteurs MRV) doivent leur nom au fait que le circuit magnétique qui les compose s'oppose de façon variable à sa pénétration par un champ magnétique.

Ces moteurs sont composés d'un barreau de fer doux et d'un certain nombre de bobines. Lorsqu'on alimente une bobine, le champ magnétique cherche à minimiser le passage dans l'air. Ainsi l'entrefer entre la bobine et le barreau se réduit. Le barreau s'aligne avec le champ magnétique pour obtenir une réluctance minimale. On alimente la phase 1, puis la phase 2, puis la phase 3... Si nous souhaitons changer le sens du moteur, il suffit de changer l'ordre d'alimentation des bobines.

Dans la pratique, le barreau de ferrite a plusieurs dents (ici 6). Dès qu'on alimente la phase 2, il y a une rotation de 15° (i.e. 60° - 45° = 15°), puis la phase 3etc. Donc le moteur tourne de 15° dès qu'on alimente une phase. Il faut 24 impulsions pour faire un tour complet. C'est un moteur 24 pas.

Inconvénients 
nécessite au moins trois bobinages, pour obtenir un cycle complet, pas de couple résiduel, c’est-à-dire que hors tension, le rotor est libre, ce qui peut être problématique pour ce genre de moteur. La fabrication est assez délicate, les entrefers doivent être très faibles.
Avantages 
peu coûteux, d'une bonne précision. Dans l'exemple, avec seulement 4 enroulements, on obtient 24 pas (on peut facilement obtenir 360 pas). Le sens du courant dans la bobine n'a aucune importance.

Moteur à aimants permanents

Les moteurs à aimants permanents sont semblables aux moteurs à réluctance variable, sauf que le rotor possède des pôles NORD et SUD. À cause des aimants permanents, le rotor reste freiné à sa dernière position lorsque le bloc d'alimentation cesse de fournir des impulsions.

Une façon simple de voir le système, est de placer une boussole entre deux aimants. Suivant la bobine qui est alimentée et le sens du courant, l'aimant va s'aligner avec le champ.

Moteur à aimant permanent bipolaires

Fonctionnement à pas complet

Cliquez sur une vignette pour l’agrandir.
Tableau récapitulatif de l'ordre des phases
Impulsion Bobine A Bobine A Bobine B Bobine B
T1 +
T2 +
T3 +
T4 +

Fonctionnement avec couple maximal

On alimente les bobines, deux par deux à chaque fois. Il y a toujours quatre pas.

Cliquez sur une vignette pour l’agrandir.
Alimentation des bobinages
Impulsion Bobine A Bobine A Bobine B Bobine B
T1 + +
T2 + +
T3 + +
T4 + +

Fonctionnement à demi-pas

Si on mélange les deux fonctionnements, on peut obtenir le double de pas, pour faire un tour complet, il faut 8 pas. On parle alors de demi-pas.

Cliquez sur une vignette pour l’agrandir.

Moteur à aimant permanent unipolaire

Dans les exemples précédents, on a vu que l'on alimente les enroulements dans les deux sens de courant, il existe des versions avec des demi-bobines (avec un point milieu). L'avantage est que l'on n'inverse jamais le sens du courant, donc la commande est plus simple. Tout le problème est que l'on « double » le nombre d'enroulements, donc le moteur est plus coûteux et encombrant, néanmoins cela reste très courant pour les petites puissances.

Cliquez sur une vignette pour l’agrandir.

Moteur pas à pas hybride

Le moteur pas à pas hybride emprunte du moteur à aimant permanent et de la machine à réluctance variable. Il est donc à réluctance variable mais avec un rotor à aimants permanents. L'avantage est un nombre de pas très élevé.

Principes communs aux moteurs pas à pas

Caractéristique dynamique

Les moteurs pas à pas ne sont pas des moteurs rapides, les plus rapides dépassent rarement la vitesse maximale de 3 000 tr/min.

Cette « lenteur » aidant, et ces moteurs étant naturellement sans balais (la majorité des moteurs pas à pas de haute qualité est de plus équipée de roulements à billes), ces moteurs ont une durée de vie extrêmement longue, sans nécessité d'entretien.

Influence de la charge et de la cinématique

Toute application impliquant l'utilisation d'un moteur pas à pas nécessite de collecter les informations indispensables à un bon dimensionnement :

  • la masse de la charge à entraîner (en kg) ;
  • son inertie (en kg⋅m2) ;
  • le type d'entraînement mécanique (vis, courroie crantée, crémaillère, etc.) ;
  • le type de guidage, afin d'estimer les frottements (secs et visqueux) ;
  • les efforts de travail (en N) ;
  • le déplacement le plus critique (distance en fonction d'un temps).

L'influence de la charge est directement liée au calcul du couple moteur via les paramètres du calcul inertiel (en kg⋅m2) et de l'accélération (en m⋅s−2). Pour des paramètres d'accélération et de chaîne cinématique identiques, un moteur pas à pas n'aura pas besoin du même couple selon la charge mise en jeu.

Pour une application industrielle, le dimensionnement d'un moteur pas à pas doit être calculé de façon rigoureuse ou être surdimensionné afin d'éviter tout problème de glissement par « perte de pas ». Le moteur pas à pas fonctionnant en boucle ouverte (sans asservissement), il ne récupère pas sa position de consigne en cas de glissement.

Pilotage des bobines

Pour un moteur pas à pas type bipolaire.

C'est le principe du Pont en H, si on commande T1 et T4, alors on alimente dans un sens, soit on alimente en T2 et T3, on change le sens de l'alimentation, donc le sens du courant.

Mini-conclusion : le moteur bipolaire est plus simple à fabriquer, mais il nécessite 8 transistors alors que le moteur unipolaire ne nécessite que 4 transistors.

Un moteur pas à pas est une charge inductive. Comme visible ci-dessus, des diodes de roue libre sont nécessaires pour assurer la circulation du courant lors du blocage des transistors, par exemple à chaque demande de réduction du courant (régulation par hacheur), ou à chaque demande de changement de sens du courant (changement de pas).



This article uses material from the Wikipedia article "Moteur pas à pas", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Electrical Engineering

EPLAN, Aucotec, CAE, AutoCAD Electrical, IGE XAO, ElCAD, 2D drawings, 2D symbols, 3D content, 3D catalog, EPLAN Electric P8, Zuken E3, schematics, dataportal, data portal, wscad universe, electronic, ProPanel3D, .EDZ, eClass Advanced, eCl@ss Advanced