powered by CADENAS

Social Share

Ytterbium (17464 views - Periodic Table Of Elements)

L'ytterbium est un élément chimique de symbole Yb et de numéro atomique 70. L'ytterbium est un métal du groupe des terres rares. Comme les autres lanthanides, il est gris argent, malléable et ductile à la température ambiante. Il doit être conservé à l'abri de l'air, surtout humide. L'appellation ytterbium, provient de l'endroit, Ytterby près de Stockholm en Suède, où l'on a découvert le minerai dans lequel ont également été identifiées plusieurs autres terres rares. Les éléments chimiques yttrium, erbium et terbium partagent la même étymologie. Comme la plupart des lanthanides il est extrait de la monazite où on le trouve dans une proportion de 0,03 %. L'ytterbium a trois formes allotropiques. Les températures de transition sont −13 °C et 795 °C. Entre ces deux températures, (forme béta) il adopte une structure cubique à faces centrées, tandis qu'à haute température (forme gamma), il devient cubique centré. L'ytterbium naturel est un mélange de 7 isotopes stables.
Go to Article

Ytterbium

Ytterbium

Ytterbium

Licensed under Creative Commons Attribution 3.0 (Hi-Res Images of Chemical Elements).

Ytterbium
Fragment d'ytterbium.
ThuliumYtterbiumLutécium
 
 
70
Yb
 
               
               
                                   
                                   
                                                               
                                                               
   
                                           
Yb
No
Tableau completTableau étendu
Informations générales
Nom, symbole, numéro Ytterbium, Yb, 70
Famille d'élémentsLanthanide
Groupe, période, bloc –, 6, f
Masse volumique6,903 g·cm-3 (α)
6,966 g·cm-3 (β)[1]
Couleurblanc argenté
No CAS7440-64-4[2]
Propriétés atomiques
Masse atomique173,04 ± 0,03 u[1]
Rayon atomique (calc)175 pm (222 pm)
Rayon de covalence187 ± 8 pm[3]
Configuration électronique[Xe] 6s2 4f14
Électrons par niveau d’énergie2,8,18,32,8,2
État(s) d’oxydation3
OxydeBase
Système cristallinCubique à faces centrées
Propriétés physiques
État ordinairesolide
Point de fusion824 °C[1]
Point d’ébullition1 196 °C[1]
Énergie de fusion7,66 kJ·mol-1
Énergie de vaporisation128,9 kJ·mol-1
Volume molaire24,84×10-3 m3·mol-1
Vitesse du son1 590 m·s-1 à 20 °C
Divers
Électronégativité (Pauling)1,1
Chaleur massique150 J·kg-1·K-1
Conductivité électrique3,51×106 S·m-1
Conductivité thermique34,9 W·m-1·K-1
Énergies d’ionisation[4]
1re : 6,25416 eV 2e : 12,176 eV
3e : 25,05 eV 4e : 43,56 eV
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
168Yb0,13 %stable avec 98 neutrons
170Yb3,05 %stable avec 100 neutrons
171Yb14,3 %stable avec 101 neutrons
172Yb21,9 %stable avec 102 neutrons
173Yb16,12 %stable avec 103 neutrons
174Yb31,8 %stable avec 104 neutrons
176Yb12,7 %stable avec 106 neutrons
Précautions
SGH[5]
État pulvérulent :

Danger
H228, H302, H312, H315, H319, H332, H335, P210, P261, P280, P305, P338, P351,
Directive 67/548/EEC[5]
État pulvérulent :

Xn

F



Unités du SI & CNTP, sauf indication contraire.

L'ytterbium est un élément chimique de symbole Yb et de numéro atomique 70.

L'ytterbium est un métal du groupe des terres rares. Comme les autres lanthanides, il est gris argent, malléable et ductile à la température ambiante. Il doit être conservé à l'abri de l'air, surtout humide.

L'appellation ytterbium, provient de l'endroit, Ytterby près de Stockholm en Suède, où l'on a découvert le minerai dans lequel ont également été identifiées plusieurs autres terres rares. Les éléments chimiques yttrium, erbium et terbium partagent la même étymologie.

Comme la plupart des lanthanides il est extrait de la monazite où on le trouve dans une proportion de 0,03 %. L'ytterbium a trois formes allotropiques. Les températures de transition sont −13 °C et 795 °C. Entre ces deux températures, (forme béta) il adopte une structure cubique à faces centrées, tandis qu'à haute température (forme gamma), il devient cubique centré. L'ytterbium naturel est un mélange de 7 isotopes stables.

Découverte

Découvertes des terres rares.
Yttrium (1794)

Yttrium



Terbium (1843)



Erbium (1843)
Erbium

Erbium



Thulium (1879)



Holmium (1879)

Holmium



Dysprosium (1886)






Ytterbium (1878)

Ytterbium

Ytterbium



Lutécium (1907)




Scandium (1879)








Cérium (1803)

Cérium


Lanthane (1839)

Lanthane


Didyme (1839)
Didyme

Néodyme (1885)



Praséodyme (1885)



Samarium (1879)

Samarium

Samarium



Europium (1901)





Gadolinium (1880)







Prométhium (1947)


Diagrammes des découvertes des terres rares. Les dates entre parenthèses sont les dates d'annonces des découvertes[6]. Les branches représentent les séparations des éléments à partir d'un ancien (l'un des nouveaux éléments conservant le nom de l'ancien, sauf pour le didyme).

En 1789, le chimiste finlandais Johan Gadolin identifie un nouvel oxyde (ou « terre ») dans un échantillon d'ytterbite (rebaptisée plus tard « gadolinite » en son honneur). Cette nouvelle roche avait été découverte deux ans auparavant par le lieutenant Carl Axel Arrhenius près du village d'Ytterby en Suède. Ces travaux sont confirmés en 1797 par Anders Gustaf Ekeberg qui baptise le nouvel oxyde yttria[7].

Près d'un demi-siècle plus tard, le Suédois Carl Gustav Mosander parvient à isoler trois composés distincts à partir de l'yttria grâce à de nouveaux procédés de cristallisation fractionnée. Il décide de conserver le terme yttria pour la fraction incolore (oxyde d'yttrium pur) et nomme la fraction jaune erbia et la fraction rose terbia, toujours en rappel du village d'Ytterby. Pour d'obscures raisons, les successeurs de Mosander intervertiront ces deux termes. C'est ainsi que erbia (l'erbine) finit par désigner l'oxyde d'erbium (rose) et terbia (la terbine) l'oxyde de terbium (jaune)[8].

En 1878, le chimiste suisse Jean Charles Galissard de Marignac découvre que l'erbine n'est pas homogène et contient en fait plusieurs éléments distincts. En traitant les chlorures en solution avec de l'acide hyposulfureux, il parvient à séparer un nouveau sel, incolore, des sels roses d'oxyde d'erbium. Consacrant la place d'Ytterby dans l'histoire de la nomenclature chimique, il nomme cette « terre » ytterbine (en latin ytterbia) et la considère comme un composé d'un nouvel élément chimique, l'ytterbium[8].

Ces expériences sont répétées l'année suivante en Suède par Lars Fredrik Nilson qui confirme la découverte et parvient à isoler un élément supplémentaire en poursuivant la procédure de fractionnement. Il le nomme scandium en l'honneur de la Scandinavie[9].

Le Français Georges Urbain, l'Autrichien Carl Auer von Welsbach et l'Américain Charles James (en) découvrent presque simultanément et indépendamment en 1907 que l'ytterbine de Marignac est constituée de deux éléments distincts. Le 4 novembre 1907, Urbain présente ses recherches à l'Académie des Sciences de Paris et propose de nommer les deux éléments néo-ytterbium, « afin d'éviter les confusions avec l'ancien élément de Marignac », et lutécium, « dérivé de l'ancien nom de Paris »[10]. Le 19 décembre, Le baron von Welsbach annonce à son tour le résultat de ses travaux menés depuis 1905. Il recommande les noms cassiopeium (Cp, d'après la constellation Cassiopée, correspondant au lutécium) et aldebaranium (Ad, d'après l'étoile Aldébaran, en remplacement de l'ytterbium)[11]. Parallèlement, à l'Université du New Hampshire, Charles James avait pu isoler des quantités importantes du compagnon de l'ytterbium durant l'été 1907. Apprenant l'annonce faite par Georges Urbain, il renonce à revendiquer la paternité du nouvel élément. Pourtant, parmi les trois scientifiques, il était probablement celui dont les recherches étaient les plus avancées[8].

Durant les années qui suivent, Urbain et von Welsbach se disputent la paternité de la découverte dans un conflit exacerbé par les tensions politiques entre la France et l'Autriche-Hongrie. En 1909, la Commission Internationale des Poids atomiques donne finalement la préséance au lutécium de Georges Urbain (réorthographié lutetium), tout en conservant le nom ytterbium pour le second élément[8].

Utilisations

Très peu d'utilisations courantes :

  • acier inoxydable : amélioration des propriétés de traitement de l'acier inoxydable ;
  • horloge atomique[12];
  • ion actif pour cristaux laser : ion actif de plus en plus utilisé dans des cristaux laser comme Yb:YAG ou Yb:KYW émettant à environ 1030-1070 nm (environ 1 micromètre) dans le proche infrarouge.

Quelques pistes, actuellement en phase de recherche :

  • activateur de substance phosphorescente pour la lumière infrarouge sous forme de Yb2O3 ;
  • dopant des lentilles acoustiques en silicone pour barrettes échographiques sous forme de Yb2O3 ;
  • médecine, radiographie industrielle : source de rayonnement entre autres pour des appareils radiographiques portables utilisant 169Yb, son spectre d'émission permet de réaliser des clichés de très bonne qualité, voisins de clichés obtenus avec un tube à rayons X ;
  • semi-conducteur : halogénure de Yb ;
  • supraconducteur : YbAlAu, YbAlB4;
  • jauge de contrainte : permettrait de mesurer les très fortes contraintes en utilisant la variation de sa conductivité.


This article uses material from the Wikipedia article "Ytterbium", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Periodic Table Of Elements

element,system,atom,molecule,metal,halogen,noble gas,chemical,chemistry