Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Names | |
---|---|
IUPAC name
Cobalt(II) acetate
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider |
|
ECHA InfoCard | 100.000.687 |
PubChem CID
|
|
UNII | |
| |
| |
Properties | |
Co(C2H3O2)2 | |
Molar mass | 177.02124 g/mol (anhydrous) 249.08 g/mol (tetrahydrate) |
Appearance | Pink crystals (anhydrous) intense red crystals (tetrahydrate) |
Odor | vinegar (tetrahydrate) |
Density | 1.705 g/cm3 (tetrahydrate) |
Melting point | 140 °C (284 °F; 413 K) (tetrahydrate) |
Soluble | |
Solubility | soluble in alcohol, dilute acids, pentyl acetate (tetrahydrate) |
+11,000·10−6 cm3/mol | |
Refractive index (nD)
|
1.542 (tetrahydrate) |
Hazards | |
Safety data sheet | J.T. Baker MSDS |
NFPA 704 | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose)
|
503 mg/kg (oral, rat) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
N verify (what is YN ?) | |
Infobox references | |
Cobalt(II) acetate is the cobalt(II) salt of acetic acid. It is commonly found as the tetrahydrate Co(C2H3O2)2·4 H2O or Co(CH3COO)2·4 H2O also abbreviated Co(OAc)2·4 H2O. It is used as an industrial catalyst.
It may be formed by the reaction between cobalt oxide or hydroxide and acetic acid:
The tetrahydrate has been shown by X-ray crystallography to adopt an octahedral structure, the central cobalt centre being coordinated by four water molecules and two acetate ligands.[1]
Cobalt acetate is a precursor to various oil drying agents, catalysts that allow paints and varnishes to harden.[2] Cobalt(II) acetate reacts with salenH2 to give salcomine, a transition metal dioxygen complex:[3]
Cobalt salts are poisonous.[4]
Salts and the ester of the acetate ion
| |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AcOH | He | ||||||||||||||||||
LiOAc | Be(OAc)2 BeAcOH |
B(OAc)3 | ROAc | NH4OAc | AcOAc | FAc | Ne | ||||||||||||
NaOAc | Mg(OAc)2 | Al(OAc)3 ALSOL Al(OAc)2OH Al2SO4(OAc)4 |
Si | P | S | ClAc | Ar | ||||||||||||
KOAc | Ca(OAc)2 | Sc(OAc)3 | Ti(OAc)4 | VO(OAc)3 | Cr(OAc)2 | Mn(OAc)2 Mn(OAc)3 |
Fe(OAc)2 Fe(OAc)3 |
Co(OAc)2, Co(OAc)3 |
Ni(OAc)2 | Cu(OAc)2 | Zn(OAc)2 | Ga(OAc)3 | Ge | As(OAc)3 | Se | BrAc | Kr | ||
RbOAc | Sr(OAc)2 | Y(OAc)3 | Zr(OAc)4 | Nb | Mo(OAc)2 | Tc | Ru(OAc)2 Ru(OAc)3 Ru(OAc)4 |
Rh2(OAc)4 | Pd(OAc)2 | AgOAc | Cd(OAc)2 | In | Sn(OAc)2 Sn(OAc)4 |
Sb(OAc)3 | Te | IAc | Xe | ||
CsOAc | Ba(OAc)2 | Hf | Ta | W | Re | Os | Ir | Pt(OAc)2 | Au | Hg2(OAc)2, Hg(OAc)2 |
TlOAc Tl(OAc)3 |
Pb(OAc)2 Pb(OAc)4 |
Bi(OAc)3 | Po | At | Rn | |||
Fr | Ra | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |||
↓ | |||||||||||||||||||
La(OAc)3 | Ce(OAc)x | Pr | Nd | Pm | Sm(OAc)3 | Eu(OAc)3 | Gd(OAc)3 | Tb | Dy(OAc)3 | Ho(OAc)3 | Er | Tm | Yb(OAc)3 | Lu(OAc)3 | |||||
Ac | Th | Pa | UO2(OAc)2 | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
This article about an organic compound is a stub. You can help Wikipedia by expanding it. |
This article uses material from the Wikipedia article "", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification