Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Free Art License (Alchemist-hp (talk) (www.pse-mendelejew.de)).
Plomb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Informations générales | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nom, symbole, numéro | Plomb, Pb, 82 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Famille d'éléments | Métal pauvre | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Groupe, période, bloc | 14, 6, p | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Masse volumique | 11,35 g·cm-3 (20 °C)[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dureté | 1,5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Couleur | blanc-gris | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No CAS | 7439-92-1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No EINECS | 231-100-4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Propriétés atomiques | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Masse atomique | 207,2 ± 0,1 u[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rayon atomique (calc) | 180 pm (154 pm) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rayon de covalence | 146 ± 5 pm[2] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rayon de van der Waals | 202 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Configuration électronique | [Xe] 6s2 4f14 5d10 6p2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Électrons par niveau d’énergie | 2, 8, 18, 32, 18, 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
État(s) d’oxydation | 4, 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxyde | Amphotère | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Système cristallin | Cubique à faces centrées | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Propriétés physiques | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
État ordinaire | solide | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Point de fusion | 327,46 °C[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Point d’ébullition | 1 749 °C[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Énergie de fusion | 4,799 kJ·mol-1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Énergie de vaporisation | 179,5 kJ·mol-1 (1 atm, 1 749 °C)[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume molaire | 18,26×10-6 m3·mol-1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pression de vapeur | 1,3 mbar (973 °C)[3] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vitesse du son | 1 260 m·s-1 à 20 °C | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Divers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Électronégativité (Pauling) | 2,33 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chaleur massique | 129 J·kg-1·K-1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conductivité électrique | 4,81×106 S·m-1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conductivité thermique | 35,3 W·m-1·K-1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Solubilité | sol. dans CH3COOH + H2O2[4], H2SO4 concentré chaud[5] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Énergies d’ionisation[6] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1re : 7,41663 eV | 2e : 15,03248 eV | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3e : 31,9373 eV | 4e : 42,32 eV | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5e : 68,8 eV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotopes les plus stables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Précautions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Danger H302 : Nocif en cas d'ingestion H332 : Nocif par inhalation H360 : Peut nuire à la fertilité ou au fœtus (indiquer l'effet s'il est connu)(indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger) H373 : Risque présumé d'effets graves pour les organes (indiquer tous les organes affectés, s'ils sont connus) à la suite d'expositions répétées ou d'une exposition prolongée (indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger) H410 : Très toxique pour les organismes aquatiques, entraîne des effets à long terme P201 : Se procurer les instructions avant utilisation. P273 : Éviter le rejet dans l’environnement. P308 : En cas d’exposition prouvée ou suspectée : P313 : Consulter un médecin. P501 : Éliminer le contenu/récipient dans … | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D2A, D2A : Matière très toxique ayant d'autres effets toxiques cancérogénicité : CIRC groupe 2B; toxicité chronique : saturnisme; embryotoxicité chez l'animal; atteinte du développement post-natal chez l'humain ; toxicité pour la reproduction chez l'humain Divulgation à 0,1% selon la liste de divulgation des ingrédients | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Code Kemler : 90 : matière dangereuse du point de vue de l'environnement, matières dangereuses diverses Numéro ONU : 3077 : MATIÈRE DANGEREUSE DU POINT DE VUE DE L’ENVIRONNEMENT, SOLIDE, N.S.A. Classe : 9 Étiquettes : 9 : Matières et objets dangereux divers 9.1 Emballage : Groupe d'emballage III : matières faiblement dangereuses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Symboles : T : Toxique N : Dangereux pour l’environnement Phrases R : R33 : Danger d’effets cumulatifs. R61 : Risque pendant la grossesse d’effets néfastes pour l’enfant. R62 : Risque possible d’altération de la fertilité. R20/22 : Nocif par inhalation et par ingestion. R50/53 : Très toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l’environnement aquatique. Phrases S : S45 : En cas d’accident ou de malaise, consulter immédiatement un médecin (si possible, lui montrer l’étiquette). S53 : Éviter l’exposition - se procurer des instructions spéciales avant l’utilisation. S60 : Éliminer le produit et son récipient comme un déchet dangereux. S61 : Éviter le rejet dans l’environnement. Consulter les instructions spéciales/la fiche de données de sécurité. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unités du SI & CNTP, sauf indication contraire. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
modifier |
Le plomb est l'élément chimique de numéro atomique 82, de symbole Pb. C'est un membre du groupe des cristallogènes. Le mot et le symbole viennent du latin plumbum (même sens).
Le plomb est un métal gris bleuâtre, blanchissant lentement en s'oxydant, malléable. C'est un élément toxique, mutagène, et reprotoxique[9], sans valeur connue d'oligoélément. Il a en effet été classé comme potentiellement cancérigène en 1980, classé dans le groupe 2B par le Centre international de recherche sur le cancer (CIRC)[10] puis comme probablement cancérigène pour l'homme et l'animal en 2004[10],[11]. Deux sels de plomb, le chromate et l'arséniate, sont considérés comme carcinogènes certains par le CIRC[10].
Le plomb est un contaminant de l'environnement, toxique et écotoxique dès les faibles doses[12]. Les maladies et symptômes qu'il provoque chez l'homme ou l'animal sont regroupées sous le nom de « saturnisme ».
Le plomb - relativement abondant dans la croûte terrestre - est l'un des métaux les plus anciennement connus et travaillés. On en a trouvé dans des pigments recouvrant des tombes ou dépouilles préhistoriques (40 000 ans av. J.-C.), mais aussi des objets.
En dépit de sa haute toxicité, et grâce probablement à sa facilité d'extraction, à sa grande malléabilité et à son bas point de fusion, il a été fréquemment utilisé lors de l'âge du bronze, durci par de l'antimoine et de l'arsenic trouvés sur les mêmes sites miniers. Il est mentionné dans les écritures cunéiformes sumériennes — sous le vocable a-gar5[13] — il y a près de 5 000 ans, ou encore dans l'Exode, rédigé il y a environ 2 500 ans. C'est souvent aussi un sous-produit de mines d'argent.
À travers les âges, de nombreux écrits relatent sa présence dans des objets ou à travers les cultures. Les Sumériens, Égyptiens, Grecs, Hébreux ou encore Romains savaient l'extraire. Ils l'utilisaient pour colorer et émailler des céramiques, lester des hameçons, sceller des amphores, produire des fards, du khôl ou produire des objets usuels (de 4 000 à 2 000 ans avant notre ère). On trouve aussi des tuyaux de plomb sur les sites antiques romains.
Au Moyen Âge, les alchimistes croyaient que le plomb était le métal le plus ancien (et le plus froid) et l'associaient à la planète Saturne. C'est pourquoi l'intoxication au plomb est dite saturnisme[14].
Sa toxicité était connue des médecins et mineurs (esclaves et prisonniers souvent) de l'antiquité. Les Romains l'utilisaient sous forme d'acétate de plomb pour conserver et sucrer leur vin, et s’étaient rendu compte que les gros buveurs, donc de la classe aristocratique, souffraient d’intoxication.
Plus tard, des symptômes spécifiques ont été décrits, associés à des métiers tels que les mineurs, fondeurs, peintres ou artisans fabricants de vitraux. Le décès d’un enfant en Australie à la fin du XIXe siècle, à la suite d'une intoxication au plomb, fut le premier à sensibiliser un gouvernement. C'est à la suite de l'étude de nombreux cas d'intoxication qu'une réglementation, des recommandations et un dépistage se sont progressivement mis en place dans des pays riches (comme en Europe ou aux États-Unis). Le plomb a ainsi été interdit pour la confection des tuyaux de distribution d'eau potable en Suisse dès 1914[15]mais bien plus tardivement dans les autres pays (exemple : les peintures au plomb ont été interdites en 1948 en France mais l'interdiction totale pour les canalisations ne date que de 1995[16]).
Le plomb possède 38 isotopes connus, de nombre de masse variant de 178 à 215, ainsi que 46 isomères nucléaires. Quatre de ces isotopes, 204Pb, 206Pb, 207Pb et 208Pb, sont stables, ou du moins ont été observés stables jusqu'à présent, puisqu'ils sont tous soupçonnés de se désintégrer par désintégration α en isotopes du mercure correspondants, avec des demi-vies extrêmement longues[17] (qui seraient même supérieures à la demi-vie théorique de ses constituants, les nucléons[a], allant au-delà de 10100 années[18]'[b]).
Le plomb 204 est entièrement un nucléide primordial et non radiogénique. Les isotopes plomb 206, plomb 207, et plomb 208 sont les produits finaux de trois chaînes de désintégration, respectivement la chaine de l'uranium (ou du radium, 4n+2), de l'actinium (4n+3) et du thorium (4n+0). Chacun de ces trois derniers isotopes est aussi, et surtout, un nucléide primordial, produit par les supernovas. La quantité relative du plomb radiogénique au plomb total serait inférieur à 1 %.
Les quatre isotopes stables, 204Pb, 206Pb, 207Pb et 208Pb, sont présents dans la nature dans un ratio 1,4/24,1/22,1/52,4 et 5 radioisotopes sont aussi présents à l'état de traces. La masse atomique standard du plomb est de 207,2(1) u.
Les isotopes sont parfois utilisés pour le traçage isotopique du plomb et lors d'analyses isotopiques destinées à étudier la cinétique environnementale de certains polluants dans l'environnement (ex : plomb de chasse après avoir été solubilisé dans le sang d'un animal atteint de saturnisme, plomb de retombées industrielles, ou plomb tétraéthyl de l'essence...)[19].
Le plomb géochimique (« naturel ») est présent sous diverses formes dans tous les compartiments environnementaux (hydrosphère, stratosphère, biosphère, atmosphère, mais surtout dans la croute terrestre et le sol). Sachant qu'il y a des échanges permanents entre ces différents compartiments, et que cet élément toxique est bioconcentré dans la chaine alimentaire, on comprend donc que l'étude et la connaissance de sa cinétique environnementale est un enjeu majeur. Il est présent sous beaucoup de formes inorganiques notamment dans la croûte terrestre et les minerais. On retrouve ainsi des acétates, nitrates, carbonates, sulfates ou encore du chlorure de plomb. Ces composés inorganiques conduisent rarement à une toxicité aigüe[14].
Minerais : une infime partie du plomb de notre environnement est encore issue de la décomposition radioactive (désintégration de l'uranium et du thorium)[pas clair]. Le plomb natif pur est rare. On l'extrait actuellement de minerais associés au zinc (la blende), à l'argent et (le plus abondamment) au cuivre. La principale source minérale est la galène (PbS) qui en contient 86,6 % en masse.
D'autres variétés communes sont la cérusite (PbCO3) et l'anglésite (PbSO4). Aujourd'hui, le recyclage permet d'en récupérer une grande part. La plupart des minerais contiennent moins de 10 % de plomb. Les minerais qui contiennent moins de 3 % de plomb ne peuvent pas être exploités économiquement. Le minerai extrait du sol est concentré par gravimétrie et flottation, puis dirigé vers une usine métallurgique (fonderie).
Les plus grands gisements sont aux États-Unis, en Australie, en CEI et au Canada. En Europe, la Suède et la Pologne concentrent la plupart des gisements.
Le plomb compte avec le mercure et le cadmium parmi les 3 contaminants les plus toxiques et fréquents de notre environnement.
Les analyses des carottes de glace polaires ou de glaciers montrent qu'il était quasiment absent de l'atmosphère pré-industrielle, sauf dans l'Antiquité grécoromaine où les fonderies de plomb ont pollué l'environnement[20],[21], parfois à un degré dépassant celui des retombées de plomb de l'essence dans les années 1970[22], signature également retrouvée dans les sédiments des ports de l'antiquité[23].
Depuis l'homme a extrait du plomb des minerais et a introduit dans la biosphère (dans tous les milieux) une quantité croissante de plomb, sous diverses formes.
Depuis la révolution industrielle, la pollution routière et industrielle, les guerres ainsi que la chasse la pêche et (cf. munitions et agrès à base de plomb) sont à l'origine d'apports de plomb parfois considérables.
Ainsi et à titre d'exemple, dans les années 1970 le taux de plomb des glaces du pôle nord avait augmenté d'un facteur 20 environ, suite à la croissance de la pollution de l'air par le plomb dans l'hémisphère nord (en grande partie à cause du plomb de l'essence)[24]. En France l'INRA et les universités régionales ont dans les années fin 1990-début 2000 montré qu'environ 45 000 tonnes de plomb se sont ajoutées au fond pédogéochimique naturel des sols forestiers et cultivés du Nord-Pas-de-Calais (non compris celui qui a été lessivé vers les mers)[25],[26],[27]. De nombreuses analyses sous-estiment la présence du plomb dans le sol, car faites à partir d'échantillons de sols ou vases finement tamisés ne prennent pas en compte les munitions ou morceaux de plomb.
Le plomb peut en outre agir en synergie avec d'autres éléments traces métalliques toxiques ou non et d'autres polluants (organiques ou acides par exemple). Or, dans cette même région, le plomb, le cuivre, le cadmium, le mercure et le sélénium sont aujourd'hui trouvés dans les couches récentes labourées à des taux de +84 % à +225 % plus élevés que dans les sols sous-jacents a priori pas ou peu pollués[28].
Le plomb n'est ni dégradable ni biodégradable. En tant que contaminant du sol, il est très stable : sa demi-vie géochimique, c'est-à-dire le temps au bout duquel la moitié de ce plomb s'est dispersée dans l'environnement, serait d'environ 7 siècles[29]. Il est plus mobile et écotoxique dans les milieux naturellement acides ou touchés par l'acidification anthropique.
À la fonderie, le minerai est tout d'abord « grillé » pour oxyder le sulfure et obtenir de l'oxyde de plomb ; le soufre est éliminé sous forme de dioxyde gazeux SO2, transformé et valorisé en acide sulfurique. Le minerai grillé est alors introduit, avec du coke, dans un four à la base duquel on souffle de l'air. La réaction de l'oxygène de l'air avec le coke donne du CO, qui réduit l'oxyde de plomb, donnant ainsi le plomb métallique liquide et du CO2.
À la base du four s'écoulent d'une part le plomb liquide, d'autre part une scorie qui est généralement granulée à l'eau avant d'être mise en décharge.
Le plomb recueilli à ce stade est appelé « plomb d'œuvre » ; il contient encore des impuretés (cuivre, argent, bismuth, antimoine, arsenic, etc.) qu'il faut éliminer. Ce raffinage du plomb, encore liquide, se fait dans des cuves, par refroidissement et ajout de divers réactifs (soufre, oxygène, zinc pour capturer l'argent, etc.).
Le plomb affiné est appelé « plomb doux ». Il est coulé et solidifié dans des lingotières avant d'être expédié chez le consommateur ou dans des entrepôts de stockage. Avant la coulée finale, des éléments peuvent être ajoutés en proportions bien définies pour élaborer des alliages (calcium, antimoine, etc.).
Dans certaines fonderies, on utilise à côté des concentrés miniers, des matières premières issues du cassage des batteries, ou des sous-produits d'autres procédés industriels (sulfate de plomb par exemple).
Paradoxalement, pour des raisons mal comprises, le plomb qui a longtemps été massivement utilisé dans les peintures anti-rouille (minium de plomb) est aussi dans certaines circonstances, un « contaminant métallurgique » qui pose problème. Il peut, dans l'industrie nucléaire notamment (où il est très présent parce que comptant parmi les métaux les plus opaques aux rayonnements) contribuer à la dissolution, l’oxydation et la fragilisation d'aciers qui sont exposés à ses alliages[30].
Il est néanmoins proposé et étudié (seul ou avec le bismuth) comme fluide caloporteur et réfrigérant, en raison de ses propriétés eutectiques dans des réacteurs dits Lead-cooled fast reactor (LCFR).
Température (°C) |
Masse volumique ρ (kg/m3) |
Viscosité dynamique μ (10−3 kg/(m⋅s)) |
Conductivité thermique λ (W/(m⋅K)) |
Capacité calorifique à pression constante Cp (kJ/(kg⋅K)) |
Commentaire |
---|---|---|---|---|---|
−173.15 | 39,6 | 0,11715 | solide | ||
0 | 11 343,7 | 35,3 (35,6) |
0,129 (0,1266) |
solide | |
20 | 11 350 (11 324) |
solide | |||
25 | 11 319 | 34,6 (35,4) |
0,1277 (0,1297) |
solide | |
100 | 11 246 | 34,4 | 0,1311 | solide | |
327,46 | 10 710 liquide 11 027 solide |
liquéfaction | |||
340 | 10 570 | ||||
350 | 10 570 | 2,462 (2,58) |
16,2 | 0,1515 (0,1428) |
liquide |
365 | 1,46 | liquide | |||
400 | 10 510 (10 525) |
2,272 (2,33) |
15,9 | 0,1508 (0,1466) |
liquide |
441 | 10 428 (10 514) |
2,116 | liquide | ||
450 | 10 450 | 2,08 | 15,69 | 0,1501 (0,1458) |
liquide |
500 | 10 390 (10 430) |
1,893 (1,84) |
15,48 | 0,1493 (0,1451) |
liquide |
551 | 10 328 | 1,740 (1,700) |
15,28 | 0,1486 (0,1443) |
liquide |
600 | 10 270 | 1,587 (1,38) |
15,07 | 0,1478 (0,1436) |
liquide |
703 | 10 163 | 1,349 | liquide | ||
844 | 9 992 | 1,185 | liquide | ||
1726,85 | 0,1381 | liquide |
L’emploi historique du plomb pose des problèmes de toxicité liés à l’absorption de particules de ce métal par les organismes vivants. C’est pourquoi le plomb est dorénavant proscrit pour une certaine gamme de produits : les peintures, les meubles, les crayons et pinceaux pour artiste, les jouets, l’eau et les aliments, les ustensiles de cuisine au contact des aliments, les bavoirs pour bébés et les cosmétiques[31].
Toutefois il est important de savoir que chaque pays possède sa propre réglementation ; ainsi, au Royaume-Uni, les plaques de plomb sont encore utilisées en toiture alors qu’en France, elles sont interdites[réf. nécessaire] (hormis dans le cadre de certains monuments historiques on utilise le zinc qui a la même apparence une fois oxydé et qui est beaucoup plus léger).
Le plomb était employé dans tout le Monde romain en raison de sa relative résistance à la corrosion (en milieu non acide) dans l'air et le sol[32] et de son bas point de fusion : on le retrouve dans les conduites d’eau potable (voir plomberie) et les descentes d’eau pluviales. Autre sel de plomb, le minium était utilisé jusque dans les années 1970 comme revêtement anticorrosion.
Le plomb continue d’être utilisé également dans la plomberie d'art, à mi-chemin entre le cuvelage et la sculpture.
Il a beaucoup été utilisé en cuvelage et tuyauterie de l'acide sulfurique, auquel il résiste par formation d’une couche insoluble et protectrice de sulfate de plomb[33] : c’est pourquoi il est encore largement utilisé aujourd'hui dans les accumulateurs électriques (batteries), qui absorbent l’essentiel de la production de plomb et sont la principale raison des envolées de son cours. Cela a pour conséquence la rentabilité du recyclage de ce métal, notamment en Afrique et en Chine où le parc automobile est en pleine expansion.
En 2004, les batteries au plomb, destinées à l’automobile ou à l’industrie, représentent 72 % de la consommation de plomb (53 % automobile, 19 % industrie). Les pigments et autres composés chimiques représentent 12 % de la consommation. Les autres applications (alliages pour soudures, tuyaux et feuilles, munitions, etc.) 16 %.
Le plomb (en plaques métalliques, dans du caoutchouc ou dans du verre) sert de protection contre les radiations pour atténuer les rayons X et les rayons gamma grâce à sa densité et à ses propriétés absorbantes : à 100 keV, 1 mm de plomb atténue la dose de rayonnement d'un facteur 1 000.
Le plomb sous forme de métal a été employé depuis l’Antiquité en raison de sa grande malléabilité et ductilité : vaisselle, plaques de toiture et de gouttières.
Dans le monde de l’électricité, le plomb a longtemps été employé pour la fabrication des fusibles en raison de sa résistivité électrique et de sa basse température de fusion. Le nom "plomb" est encore actuellement utilisé pour designer les fusibles bien que d'autres matériaux soient employés. Cette utilisation est à l’origine d'expressions comme « faire sauter les plombs. »
En alliage avec l'étain et l'antimoine, il était utilisé pour la fabrication des caractères d'imprimerie. On l'appelle alors plomb typographique. Il a été coulé pour sceller du fer forgé dans la pierre (balustrades).
On utilisait pour le maquillage le blanc de céruse. Le minium fut d'abord utilisé comme pigment rouge.
En sidérurgie, depuis la fin des années 1940, les bains au plomb (« patentage ») ont permis de tréfiler les fils d'acier à des diamètres toujours supérieurs (7, puis 8 mm) sans les rompre, en diminuant suffisamment le coefficient de frottement dans la filière. Le tréfilage produit un écrouissage de l'acier et fournit des aciers à haute limite élastique, dont les principales applications sont les câbles de hauban et les armatures de précontrainte.
Plus récemment, le plomb a été introduit dans la composition de certains additifs (antidétonants) pour les carburants automobiles, par exemple le plomb tétraéthyle. Cette application est en voie de disparition. Un des facteurs de toxicité des munitions, en effet, reste le plomb, massivement utilisé depuis longtemps pour la fabrication de munitions de guerre ou de chasse (grenaille). Avec l'arsenic et l'antimoine qui lui sont associés, il contribue à la pollution induite par les munitions. Dans le cas des plombs de chasse, on retrouve encore aujourd'hui, des sites contaminés, notamment autour des anciennes tours à plomb (bâtiment en forme de tour, spécialement conçu, sur le principe de la tour d'impesanteur pour la production industrielle de la grenaille de plomb destinée à remplir les munitions (cartouches) de chasse ou de ball-trap).
Le cristal de galène, d'abord utilisé comme pigment noir et ingrédient de base pour la préparation du khôl et du blanc de céruse dans l'Antiquité, offrit au début du XXe siècle, un semi-conducteur primitif utilisé dans la diode Schottky des premiers récepteurs radio.
L'ajout de plomb (ou plus précisément de l'oxyde de plomb) à du verre augmente son éclat : c'est là l'origine du cristal vénitien et du verre flint très utilisé en optique. L'association d'un verre flint et d'un verre crown, dans les multiplicateurs de focale type lentille de Barlow, remédie à l'aberration chromatique.
En raison de son éclat, le plomb a également été utilisé pour des glaçures de poteries[34].
Beaucoup d'usages historiques du plomb ou de ses composés sont désormais proscrits en raison de la toxicité du plomb pour le système nerveux et la plupart des organes vitaux (saturnisme). Il a été récemment (2007) montré que − même à faible dose − le plomb a aussi un effet cytotoxique sur les cellules souches du système nerveux central (de même que de faibles doses de mercure ou de paraquat)[36].
Un risque existe dès que du plomb ou certains de ses composés peuvent être inhalés (sous forme de vapeur ou de poussière) ou ingérés, et assimilés par l'organisme. Le passage percutané est également possible. Les principales voies de transport sont l’eau, l’air et les aliments.
Les enfants et femmes enceintes, puis les personnes âgées y sont les plus vulnérables ;
Seuils, et doses tolérables : Il n’existe pas vraiment de seuil de tolérance au plomb pour ces catégories de personnes décrites ci-dessus. le toxicologue se réfère néanmoins à différents types de références (seuils, normes ou doses tolérables ou admissibles), dont : « Dose Journalière Admissible » (DJA) , « Dose Journalière Tolérable » (DJT), « Dose hebdomadaire tolérable » (DHT) ou DHTP (« Dose hebdomadaire tolérable provisoire » ; « Dose Limite Annuelle » (DLA)…
Pour fixer quelques ordres de grandeur :
Le plomb sous forme pure et fine, sous forme de sels simples ou de composé organique est plus ou moins facilement assimilé par tous les organismes vivants (faune, flore, fonge, bactéries). Il est hautement écotoxique pour presque toutes les espèces connues, hormis de rares exceptions comme quelques bactéries ou de rares plantes métallo-tolérantes comme la variété Armeria maritima hallerii.
Les sels de plomb sont peu solubles dans l'eau salée ou dure (la présence d'autres sels réduit la disponibilité du plomb pour les organismes en raison de précipitations de plomb). Les résultats des tests de toxicité doivent donc être traités avec prudence, sauf quand la dissolution de plomb est mesurée.
Depuis 2007, les médias ont relaté de plus en plus de rappels massifs de jouets. De grands groupes comme Mattel, dont plusieurs jouets ont été rappelés en 2007[42],[43], ont eu beaucoup de soucis avec des jouets contaminés au plomb. Ainsi en 2007, l’industrie du jouet (22 millions de dollars) a particulièrement été touchée. Sur 81 rappels de jouets la moitié de ceux-ci impliquait six millions de jouets ayant une peinture à base de plomb excédant les limites autorisées. Le problème vient notamment du fait que les grands groupes comme Mattel sous-traitent leur production dans des pays comme la Thaïlande et la Chine[44],[45] où la réglementation et le contrôle des produits finis sont moins courants. S’ajoute à cela un manque de personnel et de budget pour les sociétés de production ainsi qu’un faible nombre de moyens mis en place au niveau des dépistages. Ce sont les enfants des pays en voie de développement qui sont les plus affectés par un taux de plomb élevé.
C’est en 2006 que la problématique a éclaté au grand jour avec la mort par empoisonnement au plomb d'un enfant âgé de 4 ans aux États-Unis. L'autopsie a révélé la présence d'un pendentif en forme de cœur dans l'abdomen, le pendentif contenait 99,1 % de plomb[46].
Depuis il existe une prise de conscience de la part des pays riches vis-à-vis de ce problème. Ainsi des associations comme « kids in danger » aux États-Unis sont apparues ainsi qu’une ré-actualisation des lois au Québec et en France notamment. Depuis que la problématique est connue de tous, de nombreuses études et analyses ont eu lieu ainsi, de nouveaux composés nocifs ont été trouvés dans les jouets mais les cas restent plus rares (arsenic et phtalates)[47].
La plombémie de l'enfant est généralement mesurée à partir d'une simple piqûre au doigt, à l'hôpital. Le résultat fourni est en µg/L.
Les plombémies détectées chez l'enfant s’étendent de 5 à 1 400 ppm.
Chez l'adulte, une plombémie est considérée comme « normale » si inférieure à 0,4 ppm, et la plomburie doit être inférieure à 0,08 ppm.
D'autres techniques de mesure sont possibles, en particulier dans les pays en voie de développement particulièrement touchés par le saturnisme.
La tendance est d'utiliser des biomarqueurs humains, et d'échantillonner autre chose que le sang qui ne traduit que l'intoxication éventuelle du moment, alors que les cheveux[48], dents de lait[49], ou les ongles[50]) ont accumulé du plomb sur une plus longue période. On peut ainsi retrouver dans les cheveux une concentration en plomb 10 fois plus élevée que celle présente dans l'urine ou le sang. Il est aussi plus aisé d'échantillonner, conserver et transporter des phanères (cheveux, ongles) plutôt que des solutions susceptibles de se dégrader.
L'analyse implique de passer d’un composé solide à un liquide (par dissolution à chaud dans un acide fort en général), ce qui permet la destruction de toute matière organique. Pour les dents, l'émail est attaquée par un mélange HCL/glycérol. L'analyse se fait généralement par absorption atomique de flamme. L'utilisation d'échantillons certifiés (CRM) est un des éléments de validation des méthodes.
Un questionnaire vise à rechercher l'origine de l'intoxication.
À titre d’exemple, au Kenya un enfant vivant dans une maison peinte avait en moyenne une plombémie de 30,2 ± 2,9 ug/g alors qu'un enfant vivant dans une maison non peinte avait en moyenne une plombémie de 19,8 ± 0,9 ug/g.
Il existe d’autres types de matrices pour lesquelles il est important de connaître le taux de plomb (eau, vin, bières, jus de fruits, fruits et légumes, viandes, poissons, crustacés, champignons, lait, fromages...). Les analyses sont parfois complexes car mettant en jeu de réactions de coprécipitations ou dérivations pour pouvoir travailler avec ce type de matrices.
De nouvelles techniques d'analyse pourraient se développer, dont peut-être les analyses par Spectrométrie de fluorescence des rayons X. Des appareils portables (pistolets de fluorescence à rayons X) permettent de faire un premier diagnostic sur le terrain ; il suffit de pointer le pistolet sur un jouet pour avoir une mesure instantanée du plomb total présent à sa surface ou juste sous sa surface. Ces appareils sont encore couteux (ex : +/- 30 000 dollars pour un analyseur portable[51]).
Des études sur l'animal se poursuivent (rats, souris...) pour évaluer plus finement l'impact de la présence de plomb (dont dans les jouets), sur la physiologie, le comportement et la psychologie du développement, des enfants en particulier[52].
Enfin, des procédés visant à traiter les eaux contaminées existent ou sont actuellement en développement comme des membranes à base de matériaux composites qui après toute une série d’équilibres avec le plomb en solution vont pouvoir le capter intégralement en une soixantaine de minutes[53].
Des hôpitaux distribuent dorénavant des fiches explicatives[54] aux parents dans lesquelles ils incitent les familles à venir faire des visites de contrôle de dépistage du plomb surtout s’ils habitent dans une zone à risque (vieilles maisons, proximité d’usines…). Ils leur expliquent aussi notamment quels sont les sources d’intoxication, les risques que cela implique, et comment combattre cela. Ainsi une nourriture riche en fer (haricots, épinards…) et en calcium (fromage, lait...) est préconisée.
Au cas où un enfant serait amené à être intoxiqué, son taux de plomb dans le sang peut être abaissé. Pour cela des lavages gastriques ou encore l’ajout d’agent complexant comme l’EDTA peuvent être utilisés. Toutefois ce ne sont que des techniques visant à baisser la teneur en plomb dans l'organisme, mais, en aucun cas, elles ne peuvent éliminer tous les effets négatifs[55].
Le plomb est considéré comme une ressource non renouvelable. Après la faillite et/ou rachat de quelques producteurs importants, le marché est concentré autour des besoins du bâtiment, des batteries, des munitions ainsi que de la radioprotection.
En 2013, le groupe Eco-Bat Technologies qui recycle le plomb de batteries et produit divers produits en plomb ou à base de plomb se présente comme leader en France où il opère sous le nom de marque Le Plomb Français, en Europe et dans le monde.
Le plomb est un métal stratégique dont le prix de vente est très irrégulier, coté en dollars US, en particulier à la Bourse des métaux de Londres[56]. Sur les dix dernières années, les cours ont évolué entre 400 et 3 665 $ par tonne.
En raison de sa toxicité, les interdictions d’usage du plomb se multiplient dans le monde, ce qui aurait dû faire baisser son prix. Mais paradoxalement, c’est le métal dont le prix a le plus augmenté en 2007, face à la demande chinoise de batteries selon les uns, face à un marché qui s’est refermé et qui est contrôlé par quelques grands groupes selon les autres ; rachats et/ou fermeture d’usines (fermeture de Metaleurop Nord en France par exemple), usines en difficultés pour cause de pollution et problèmes sanitaires (ex : Bourg-Fidèle), fermeture en Australie en 2007 de la mine Magellan (3 % de la production mondiale, plus grande mine du monde), suivie d'une explosion dans une raffinerie (Doe Run) du Missouri qui a encore fait grimper les prix. En 6 mois le prix du plomb a doublé, il a été multiplié par 7 en 4 ans, atteignant un record en octobre 2007 (3 655 dollars/tonne, contre 500 dollars/tonne en 2003). Le 26 juin 2007 son prix dépassait celui de l'aluminium avant de dépasser celui du zinc. 10 ans plus tard, en mars 2017, il se vendait à 2 037 €/t (2 281 $/t), soit + 26,6 % sur un an[57].
La demande grimpait de 2 % par an jusqu'en 2004 (à 80 % pour fabriquer des batteries). Le stock mondial mi-2007 est tombé à 30 000 tonnes. « Soit 2 jours de consommation »[58]. La Chambre syndicale du plomb voit une vertu positive à cette demande : elle devrait encourager un meilleur recyclage des batteries « (de 130 euros la tonne, leur prix a bondi à 350 euros en un an) »[59].
Consommation mondiale 2004 : 7 082 milliers de tonnes (kt) | Production mondiale de plomb métal 2004 : 6 822 kt | |
---|---|---|
Continent | Milliers de tonnes | |
Asie | 2 870 | 2 880 |
Amériques | 2 030 | 2 009 |
Europe | 2 011 | 1 551 |
Afrique | 131 | 101 |
Océanie | 40 | 281 |
les principaux producteur en 2014[60] :
Pays | production | % mondial | |
---|---|---|---|
1 | Chine | 2 850 000 t | 52,6 % |
2 | Australie | 711 000 t | 13,1 % |
3 | États-Unis | 340 000 t | 6,3 % |
4 | Pérou | 266 500 t | 4,9 % |
5 | Mexique | 250 000 t | 4,6 % |
6 | Russie | 143 000 t | 2,6 % |
7 | Inde | 105 000 t | 1,9 % |
8 | Bolivie | 82 100 t | 1,5 % |
9 | Turquie | 78 000 t | 1,4 % |
10 | Suède | 59 600 t | 1,1 % |
Total monde | 5 414 000 t | 100 % |
Le plomb métallique est produit dans des usines appelées fonderies (voir ci-dessus chapitre métallurgie), dont les matières premières proviennent soit de mines (concentrés miniers) soit du recyclage (en particulier le recyclage des batteries usagées). Sur les 6,8 millions de tonnes de production, environ 3 millions proviennent de concentrés miniers et 3,8 millions du recyclage.
Le recyclage est devenu maintenant la première source de plomb.
En résumé, il est important de se souvenir que la consommation mondiale de plomb ne cesse d’augmenter depuis le Moyen Âge. Depuis deux décennies, elle a tendance à stagner dans les pays développés car ceux-ci ont pris conscience des dangers liés à sa toxicité. Ils ont cherché des substituts au plomb et ont mis en place un certain nombre de normes liées à son utilisation. Par contre, les pays en voie de développement continuent de l’utiliser et leur consommation de plomb ne cesse d’augmenter faute de moyens[14].
Le plomb doit légalement être recherché dans l'eau potable, l'air et les aliments, où il ne doit pas dépasser certaines doses.
Il a peu à peu été interdit pour un certain nombre d'usages (en commençant par les peintures et les contenants alimentaires).
Cette réglementation varie selon les pays et les époques.
En 2014, la France est nette importatrice de plomb, d'après les douanes françaises. Le prix moyen à la tonne à l'import était de 1 830 €[62].
This article uses material from the Wikipedia article "Plomb", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification