powered by CADENAS

Social Share

Plomb (22501 views - Material Database)

Le plomb est l'élément chimique de numéro atomique 82, de symbole Pb. C'est un membre du groupe des cristallogènes. Le mot et le symbole viennent du latin plumbum (même sens). Le plomb est un métal gris bleuâtre, blanchissant lentement en s'oxydant, malléable. C'est un élément toxique, mutagène, et reprotoxique, sans valeur connue d'oligoélément. Il a en effet été classé comme potentiellement cancérigène en 1980, classé dans le groupe 2B par le Centre international de recherche sur le cancer (CIRC) puis comme probablement cancérigène pour l'homme et l'animal en 2004,. Deux sels de plomb, le chromate et l'arséniate, sont considérés comme carcinogènes certains par le CIRC. Le plomb est un contaminant de l'environnement, toxique et écotoxique dès les faibles doses. Les maladies et symptômes qu'il provoque chez l'homme ou l'animal sont regroupées sous le nom de « saturnisme ».
Go to Article

Plomb

Plomb

Cet article concerne l'élément chimique. Pour les autres significations, voir Plomb (homonymie) et Pb.
Pour l’article ayant un titre homophone, voir Plon.
Plomb
ThalliumPlombBismuth
Sn
 
 
82
Pb
 
               
               
                                   
                                   
                                                               
                                                               
   
                                           
Pb
Fl
Tableau completTableau étendu
Informations générales
Nom, symbole, numéro Plomb, Pb, 82
Famille d'élémentsMétal pauvre
Groupe, période, bloc 14, 6, p
Masse volumique11,35 g·cm-3 (20 °C)[1]
Dureté1,5
Couleurblanc-gris
No CAS7439-92-1
No EINECS231-100-4
Propriétés atomiques
Masse atomique207,2 ± 0,1 u[1]
Rayon atomique (calc)180 pm (154 pm)
Rayon de covalence146 ± 5 pm[2]
Rayon de van der Waals202 pm
Configuration électronique[Xe] 6s2 4f14 5d10 6p2
Électrons par niveau d’énergie2, 8, 18, 32, 18, 4
État(s) d’oxydation4, 2
OxydeAmphotère
Système cristallinCubique à faces centrées
Propriétés physiques
État ordinairesolide
Point de fusion327,46 °C[1]
Point d’ébullition1 749 °C[1]
Énergie de fusion4,799 kJ·mol-1
Énergie de vaporisation179,5 kJ·mol-1 (1 atm, 1 749 °C)[1]
Volume molaire18,26×10-6 m3·mol-1
Pression de vapeur1,3 mbar (973 °C)[3]
Vitesse du son1 260 m·s-1 à 20 °C
Divers
Électronégativité (Pauling)2,33
Chaleur massique129 J·kg-1·K-1
Conductivité électrique4,81×106 S·m-1
Conductivité thermique35,3 W·m-1·K-1
Solubilitésol. dans CH3COOH + H2O2[4],

HCl + Br2,

H2SO4 concentré chaud[5]
Énergies d’ionisation[6]
1re : 7,41663 eV 2e : 15,03248 eV
3e : 31,9373 eV 4e : 42,32 eV
5e : 68,8 eV
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
202Pb{syn.}52 500 aα
ε
2,598
0,050
198Hg
202Tl
204Pb1,4 %stable avec 122 neutrons
205Pb{syn.}1,53×107 aε0,051205Tl
206Pb24,1 %stable avec 124 neutrons
207Pb22,1 %stable avec 125 neutrons
208Pb52,4 %stable avec 126 neutrons
210Pb{syn.}22,3 aα
ß-
3,792
0,064
206Hg
210Bi
Précautions
SGH[7]

Danger
H302, H332, H360, H373, H410, P201, P273, P308, P313, P501,
SIMDUT[8]

D2A,
Transport[3]
90
   3077   
Directive 67/548/EEC[3]

T

N



Unités du SI & CNTP, sauf indication contraire.

Le plomb est l'élément chimique de numéro atomique 82, de symbole Pb. C'est un membre du groupe des cristallogènes. Le mot et le symbole viennent du latin plumbum (même sens).

Le plomb est un métal gris bleuâtre, blanchissant lentement en s'oxydant, malléable. C'est un élément toxique, mutagène, et reprotoxique[9], sans valeur connue d'oligoélément. Il a en effet été classé comme potentiellement cancérigène en 1980, classé dans le groupe 2B par le Centre international de recherche sur le cancer (CIRC)[10] puis comme probablement cancérigène pour l'homme et l'animal en 2004[10],[11]. Deux sels de plomb, le chromate et l'arséniate, sont considérés comme carcinogènes certains par le CIRC[10].

Le plomb est un contaminant de l'environnement, toxique et écotoxique dès les faibles doses[12]. Les maladies et symptômes qu'il provoque chez l'homme ou l'animal sont regroupées sous le nom de « saturnisme ».

Histoire

Le plomb - relativement abondant dans la croûte terrestre - est l'un des métaux les plus anciennement connus et travaillés. On en a trouvé dans des pigments recouvrant des tombes ou dépouilles préhistoriques (40 000 ans av. J.-C.), mais aussi des objets.

En dépit de sa haute toxicité, et grâce probablement à sa facilité d'extraction, à sa grande malléabilité et à son bas point de fusion, il a été fréquemment utilisé lors de l'âge du bronze, durci par de l'antimoine et de l'arsenic trouvés sur les mêmes sites miniers. Il est mentionné dans les écritures cunéiformes sumériennes — sous le vocable a-gar5[13] — il y a près de 5 000 ans, ou encore dans l'Exode, rédigé il y a environ 2 500 ans. C'est souvent aussi un sous-produit de mines d'argent.

À travers les âges, de nombreux écrits relatent sa présence dans des objets ou à travers les cultures. Les Sumériens, Égyptiens, Grecs, Hébreux ou encore Romains savaient l'extraire. Ils l'utilisaient pour colorer et émailler des céramiques, lester des hameçons, sceller des amphores, produire des fards, du khôl ou produire des objets usuels (de 4 000 à 2 000 ans avant notre ère). On trouve aussi des tuyaux de plomb sur les sites antiques romains.

Au Moyen Âge, les alchimistes croyaient que le plomb était le métal le plus ancien (et le plus froid) et l'associaient à la planète Saturne. C'est pourquoi l'intoxication au plomb est dite saturnisme[14].

Sa toxicité était connue des médecins et mineurs (esclaves et prisonniers souvent) de l'antiquité. Les Romains l'utilisaient sous forme d'acétate de plomb pour conserver et sucrer leur vin, et s’étaient rendu compte que les gros buveurs, donc de la classe aristocratique, souffraient d’intoxication.

Plus tard, des symptômes spécifiques ont été décrits, associés à des métiers tels que les mineurs, fondeurs, peintres ou artisans fabricants de vitraux. Le décès d’un enfant en Australie à la fin du XIXe siècle, à la suite d'une intoxication au plomb, fut le premier à sensibiliser un gouvernement. C'est à la suite de l'étude de nombreux cas d'intoxication qu'une réglementation, des recommandations et un dépistage se sont progressivement mis en place dans des pays riches (comme en Europe ou aux États-Unis). Le plomb a ainsi été interdit pour la confection des tuyaux de distribution d'eau potable en Suisse dès 1914[15]mais bien plus tardivement dans les autres pays (exemple : les peintures au plomb ont été interdites en 1948 en France mais l'interdiction totale pour les canalisations ne date que de 1995[16]).

Isotopes

Article détaillé : Isotopes du plomb.

Le plomb possède 38 isotopes connus, de nombre de masse variant de 178 à 215, ainsi que 46 isomères nucléaires. Quatre de ces isotopes, 204Pb, 206Pb, 207Pb et 208Pb, sont stables, ou du moins ont été observés stables jusqu'à présent, puisqu'ils sont tous soupçonnés de se désintégrer par désintégration α en isotopes du mercure correspondants, avec des demi-vies extrêmement longues[17] (qui seraient même supérieures à la demi-vie théorique de ses constituants, les nucléons[a], allant au-delà de 10100 années[18]'[b]).

Le plomb 204 est entièrement un nucléide primordial et non radiogénique. Les isotopes plomb 206, plomb 207, et plomb 208 sont les produits finaux de trois chaînes de désintégration, respectivement la chaine de l'uranium (ou du radium, 4n+2), de l'actinium (4n+3) et du thorium (4n+0). Chacun de ces trois derniers isotopes est aussi, et surtout, un nucléide primordial, produit par les supernovas. La quantité relative du plomb radiogénique au plomb total serait inférieur à 1 %.

Les quatre isotopes stables, 204Pb, 206Pb, 207Pb et 208Pb, sont présents dans la nature dans un ratio 1,4/24,1/22,1/52,4 et 5 radioisotopes sont aussi présents à l'état de traces. La masse atomique standard du plomb est de 207,2(1) u.

Les isotopes sont parfois utilisés pour le traçage isotopique du plomb et lors d'analyses isotopiques destinées à étudier la cinétique environnementale de certains polluants dans l'environnement (ex : plomb de chasse après avoir été solubilisé dans le sang d'un animal atteint de saturnisme, plomb de retombées industrielles, ou plomb tétraéthyl de l'essence...)[19].

Le plomb géochimique et son extraction

Le plomb géochimique (« naturel ») est présent sous diverses formes dans tous les compartiments environnementaux (hydrosphère, stratosphère, biosphère, atmosphère, mais surtout dans la croute terrestre et le sol). Sachant qu'il y a des échanges permanents entre ces différents compartiments, et que cet élément toxique est bioconcentré dans la chaine alimentaire, on comprend donc que l'étude et la connaissance de sa cinétique environnementale est un enjeu majeur. Il est présent sous beaucoup de formes inorganiques notamment dans la croûte terrestre et les minerais. On retrouve ainsi des acétates, nitrates, carbonates, sulfates ou encore du chlorure de plomb. Ces composés inorganiques conduisent rarement à une toxicité aigüe[14].

Minerais : une infime partie du plomb de notre environnement est encore issue de la décomposition radioactive (désintégration de l'uranium et du thorium)[pas clair]. Le plomb natif pur est rare. On l'extrait actuellement de minerais associés au zinc (la blende), à l'argent et (le plus abondamment) au cuivre. La principale source minérale est la galène (PbS) qui en contient 86,6 % en masse.
D'autres variétés communes sont la cérusite (PbCO3) et l'anglésite (PbSO4). Aujourd'hui, le recyclage permet d'en récupérer une grande part. La plupart des minerais contiennent moins de 10 % de plomb. Les minerais qui contiennent moins de 3 % de plomb ne peuvent pas être exploités économiquement. Le minerai extrait du sol est concentré par gravimétrie et flottation, puis dirigé vers une usine métallurgique (fonderie).

Les plus grands gisements sont aux États-Unis, en Australie, en CEI et au Canada. En Europe, la Suède et la Pologne concentrent la plupart des gisements.

Le plomb comme contaminant de l'environnement

Émission de plomb dans l'air (à gauche) et dans l'eau (à droite en rouge) pour tout le Canada, de 1990 à 2004. Ce graphique montre l'effet d'une catastrophe industrielle minière en termes de rejets (rupture de la digue de confinement des boues polluées, lors de la catastrophe du Mount Polley).

Le plomb compte avec le mercure et le cadmium parmi les 3 contaminants les plus toxiques et fréquents de notre environnement.

Les analyses des carottes de glace polaires ou de glaciers montrent qu'il était quasiment absent de l'atmosphère pré-industrielle, sauf dans l'Antiquité grécoromaine où les fonderies de plomb ont pollué l'environnement[20],[21], parfois à un degré dépassant celui des retombées de plomb de l'essence dans les années 1970[22], signature également retrouvée dans les sédiments des ports de l'antiquité[23].

Depuis l'homme a extrait du plomb des minerais et a introduit dans la biosphère (dans tous les milieux) une quantité croissante de plomb, sous diverses formes.

Depuis la révolution industrielle, la pollution routière et industrielle, les guerres ainsi que la chasse la pêche et (cf. munitions et agrès à base de plomb) sont à l'origine d'apports de plomb parfois considérables.
Ainsi et à titre d'exemple, dans les années 1970 le taux de plomb des glaces du pôle nord avait augmenté d'un facteur 20 environ, suite à la croissance de la pollution de l'air par le plomb dans l'hémisphère nord (en grande partie à cause du plomb de l'essence)[24]. En France l'INRA et les universités régionales ont dans les années fin 1990-début 2000 montré qu'environ 45 000 tonnes de plomb se sont ajoutées au fond pédogéochimique naturel des sols forestiers et cultivés du Nord-Pas-de-Calais (non compris celui qui a été lessivé vers les mers)[25],[26],[27]. De nombreuses analyses sous-estiment la présence du plomb dans le sol, car faites à partir d'échantillons de sols ou vases finement tamisés ne prennent pas en compte les munitions ou morceaux de plomb.
Le plomb peut en outre agir en synergie avec d'autres éléments traces métalliques toxiques ou non et d'autres polluants (organiques ou acides par exemple). Or, dans cette même région, le plomb, le cuivre, le cadmium, le mercure et le sélénium sont aujourd'hui trouvés dans les couches récentes labourées à des taux de +84 % à +225 % plus élevés que dans les sols sous-jacents a priori pas ou peu pollués[28].
Le plomb n'est ni dégradable ni biodégradable. En tant que contaminant du sol, il est très stable : sa demi-vie géochimique, c'est-à-dire le temps au bout duquel la moitié de ce plomb s'est dispersée dans l'environnement, serait d'environ 7 siècles[29]. Il est plus mobile et écotoxique dans les milieux naturellement acides ou touchés par l'acidification anthropique.

Métallurgie

À partir de sulfures

À la fonderie, le minerai est tout d'abord « grillé » pour oxyder le sulfure et obtenir de l'oxyde de plomb ; le soufre est éliminé sous forme de dioxyde gazeux SO2, transformé et valorisé en acide sulfurique. Le minerai grillé est alors introduit, avec du coke, dans un four à la base duquel on souffle de l'air. La réaction de l'oxygène de l'air avec le coke donne du CO, qui réduit l'oxyde de plomb, donnant ainsi le plomb métallique liquide et du CO2.

À la base du four s'écoulent d'une part le plomb liquide, d'autre part une scorie qui est généralement granulée à l'eau avant d'être mise en décharge.

Le plomb recueilli à ce stade est appelé « plomb d'œuvre » ; il contient encore des impuretés (cuivre, argent, bismuth, antimoine, arsenic, etc.) qu'il faut éliminer. Ce raffinage du plomb, encore liquide, se fait dans des cuves, par refroidissement et ajout de divers réactifs (soufre, oxygène, zinc pour capturer l'argent, etc.).

Affinage

Le plomb affiné est appelé « plomb doux ». Il est coulé et solidifié dans des lingotières avant d'être expédié chez le consommateur ou dans des entrepôts de stockage. Avant la coulée finale, des éléments peuvent être ajoutés en proportions bien définies pour élaborer des alliages (calcium, antimoine, etc.).

Dans certaines fonderies, on utilise à côté des concentrés miniers, des matières premières issues du cassage des batteries, ou des sous-produits d'autres procédés industriels (sulfate de plomb par exemple).

Contaminant métallurgique, parfois

Paradoxalement, pour des raisons mal comprises, le plomb qui a longtemps été massivement utilisé dans les peintures anti-rouille (minium de plomb) est aussi dans certaines circonstances, un « contaminant métallurgique » qui pose problème. Il peut, dans l'industrie nucléaire notamment (où il est très présent parce que comptant parmi les métaux les plus opaques aux rayonnements) contribuer à la dissolution, l’oxydation et la fragilisation d'aciers qui sont exposés à ses alliages[30].
Il est néanmoins proposé et étudié (seul ou avec le bismuth) comme fluide caloporteur et réfrigérant, en raison de ses propriétés eutectiques dans des réacteurs dits Lead-cooled fast reactor (LCFR).

Caractéristiques physiques

  • Le plomb est utilisé comme réfrigérant à haute température, seul, ou fréquemment allié au bismuth qui permet d'abaisser sa température de fusion, facilitant ainsi l'exploitation de la boucle fluide. L'alliage 44,5 % Pb - 55,5 % Bi se liquéfie à 125 °C et bout à 1 670 °C
  • Coefficient de dilatation à 25 °C = 29 × 10−6 K−1
  • Formule pour la masse volumique du solide : ρ = 11 343,7 / (1 + 0,000029 ⋅ t)3 ; avec ρ en kg/m3 et t en °C
  • Corrélation pour la masse volumique du liquide : ρ = 10 710 - 1,39 ⋅ (t - 327,46) ; avec ρ en kg/m3 et t en °C ; applicable entre 330 et 1 000 °C[1]
  • Corrélation pour la valeur de Cp du solide : Cp = 0,1139 + 4,6444 ×10−5 ⋅ (t + 273,15) ; avec Cp en kJ/(kg⋅K) et t en °C ; applicable entre 0 et 300 °C[1]
  • Corrélation pour la valeur de Cp du liquide : Cp = 0,1565 - 0,01066 ⋅ (t + 273,15) ; avec Cp en kJ/(kg⋅K) et t en °C ; applicable entre 330 et 1 000 °C[1]
  • Corrélation pour la viscosité dynamique du liquide : μ = 5,6452 ×10−9 ⋅ t2 - 9,56425 ×10−6 ⋅ t + 0,005236 ; avec μ en kg/(m⋅s) et t en °C ; applicable entre 330 et 850 °C
  • Corrélation pour la conductivité thermique du liquide : λ = 3,86667 ×10−6 ⋅ t2 - 0,081933 ⋅ t + 18,594 ; avec λ en W/(m⋅K) et t en °C ; applicable entre 330 et 850 °C
Quelques caractéristiques thermodynamiques du plomb[c],[1]
Température
(°C)
Masse
volumique

ρ
(kg/m3)
Viscosité
dynamique

μ
(10−3 kg/(m⋅s))
Conductivité
thermique

λ
(W/(m⋅K))
Capacité
calorifique
à pression
constante

Cp
(kJ/(kg⋅K))
Commentaire
−173.15 39,6 0,11715 solide
0 11 343,7 35,3
(35,6)
0,129
(0,1266)
solide
20 11 350
(11 324)
solide
25 11 319 34,6
(35,4)
0,1277
(0,1297)
solide
100 11 246 34,4 0,1311 solide
327,46 10 710
liquide
11 027
solide
liquéfaction
340 10 570
350 10 570 2,462
(2,58)
16,2 0,1515
(0,1428)
liquide
365 1,46 liquide
400 10 510
(10 525)
2,272
(2,33)
15,9 0,1508
(0,1466)
liquide
441 10 428
(10 514)
2,116 liquide
450 10 450 2,08 15,69 0,1501
(0,1458)
liquide
500 10 390
(10 430)
1,893
(1,84)
15,48 0,1493
(0,1451)
liquide
551 10 328 1,740
(1,700)
15,28 0,1486
(0,1443)
liquide
600 10 270 1,587
(1,38)
15,07 0,1478
(0,1436)
liquide
703 10 163 1,349 liquide
844 9 992 1,185 liquide
1726,85 0,1381 liquide

Le plomb et les êtres humains

L’emploi historique du plomb pose des problèmes de toxicité liés à l’absorption de particules de ce métal par les organismes vivants. C’est pourquoi le plomb est dorénavant proscrit pour une certaine gamme de produits : les peintures, les meubles, les crayons et pinceaux pour artiste, les jouets, l’eau et les aliments, les ustensiles de cuisine au contact des aliments, les bavoirs pour bébés et les cosmétiques[31].

Toutefois il est important de savoir que chaque pays possède sa propre réglementation ; ainsi, au Royaume-Uni, les plaques de plomb sont encore utilisées en toiture alors qu’en France, elles sont interdites[réf. nécessaire] (hormis dans le cadre de certains monuments historiques on utilise le zinc qui a la même apparence une fois oxydé et qui est beaucoup plus léger).

Utilisations

Métal inerte

Le plomb était employé dans tout le Monde romain en raison de sa relative résistance à la corrosion (en milieu non acide) dans l'air et le sol[32] et de son bas point de fusion : on le retrouve dans les conduites d’eau potable (voir plomberie) et les descentes d’eau pluviales. Autre sel de plomb, le minium était utilisé jusque dans les années 1970 comme revêtement anticorrosion.

Le plomb continue d’être utilisé également dans la plomberie d'art, à mi-chemin entre le cuvelage et la sculpture.

Il a beaucoup été utilisé en cuvelage et tuyauterie de l'acide sulfurique, auquel il résiste par formation d’une couche insoluble et protectrice de sulfate de plomb[33] : c’est pourquoi il est encore largement utilisé aujourd'hui dans les accumulateurs électriques (batteries), qui absorbent l’essentiel de la production de plomb et sont la principale raison des envolées de son cours. Cela a pour conséquence la rentabilité du recyclage de ce métal, notamment en Afrique et en Chine où le parc automobile est en pleine expansion.

En 2004, les batteries au plomb, destinées à l’automobile ou à l’industrie, représentent 72 % de la consommation de plomb (53 % automobile, 19 % industrie). Les pigments et autres composés chimiques représentent 12 % de la consommation. Les autres applications (alliages pour soudures, tuyaux et feuilles, munitions, etc.) 16 %.

Le plomb (en plaques métalliques, dans du caoutchouc ou dans du verre) sert de protection contre les radiations pour atténuer les rayons X et les rayons gamma grâce à sa densité et à ses propriétés absorbantes : à 100 keV, 1 mm de plomb atténue la dose de rayonnement d'un facteur 1 000.

Métal ductile

Le plomb sous forme de métal a été employé depuis l’Antiquité en raison de sa grande malléabilité et ductilité : vaisselle, plaques de toiture et de gouttières.

Fusible

Dans le monde de l’électricité, le plomb a longtemps été employé pour la fabrication des fusibles en raison de sa résistivité électrique et de sa basse température de fusion. Le nom "plomb" est encore actuellement utilisé pour designer les fusibles bien que d'autres matériaux soient employés. Cette utilisation est à l’origine d'expressions comme « faire sauter les plombs. »

En alliage avec l'étain et l'antimoine, il était utilisé pour la fabrication des caractères d'imprimerie. On l'appelle alors plomb typographique. Il a été coulé pour sceller du fer forgé dans la pierre (balustrades).

Lubrifiant solide

On utilisait pour le maquillage le blanc de céruse. Le minium fut d'abord utilisé comme pigment rouge.

En sidérurgie, depuis la fin des années 1940, les bains au plomb (« patentage ») ont permis de tréfiler les fils d'acier à des diamètres toujours supérieurs (7, puis 8 mm) sans les rompre, en diminuant suffisamment le coefficient de frottement dans la filière. Le tréfilage produit un écrouissage de l'acier et fournit des aciers à haute limite élastique, dont les principales applications sont les câbles de hauban et les armatures de précontrainte.

Antidétonant

Plus récemment, le plomb a été introduit dans la composition de certains additifs (antidétonants) pour les carburants automobiles, par exemple le plomb tétraéthyle. Cette application est en voie de disparition. Un des facteurs de toxicité des munitions, en effet, reste le plomb, massivement utilisé depuis longtemps pour la fabrication de munitions de guerre ou de chasse (grenaille). Avec l'arsenic et l'antimoine qui lui sont associés, il contribue à la pollution induite par les munitions. Dans le cas des plombs de chasse, on retrouve encore aujourd'hui, des sites contaminés, notamment autour des anciennes tours à plomb (bâtiment en forme de tour, spécialement conçu, sur le principe de la tour d'impesanteur pour la production industrielle de la grenaille de plomb destinée à remplir les munitions (cartouches) de chasse ou de ball-trap).

Un semi-conducteur : la galène

Le cristal de galène, d'abord utilisé comme pigment noir et ingrédient de base pour la préparation du khôl et du blanc de céruse dans l'Antiquité, offrit au début du XXe siècle, un semi-conducteur primitif utilisé dans la diode Schottky des premiers récepteurs radio.

Cristal optique

L'ajout de plomb (ou plus précisément de l'oxyde de plomb) à du verre augmente son éclat : c'est là l'origine du cristal vénitien et du verre flint très utilisé en optique. L'association d'un verre flint et d'un verre crown, dans les multiplicateurs de focale type lentille de Barlow, remédie à l'aberration chromatique.

En raison de son éclat, le plomb a également été utilisé pour des glaçures de poteries[34].

Toxicité, écotoxicité

Beaucoup d'usages historiques du plomb ou de ses composés sont désormais proscrits en raison de la toxicité du plomb pour le système nerveux et la plupart des organes vitaux (saturnisme). Il a été récemment (2007) montré que − même à faible dose − le plomb a aussi un effet cytotoxique sur les cellules souches du système nerveux central (de même que de faibles doses de mercure ou de paraquat)[36].

Toxicité

Articles détaillés : Plomb (maladie professionnelle) et Saturnisme.

Un risque existe dès que du plomb ou certains de ses composés peuvent être inhalés (sous forme de vapeur ou de poussière) ou ingérés, et assimilés par l'organisme. Le passage percutané est également possible. Les principales voies de transport sont l’eau, l’air et les aliments.

Les enfants et femmes enceintes, puis les personnes âgées y sont les plus vulnérables ;

  1. L'embryon et le fœtus: ils ne sont pas protégés par le placenta et y sont extrêmement sensibles ; avec des effets différés graves (débilité mentale) pour de faibles doses d'exposition au stade fœtal.
  2. Les enfants: ils sont souvent les plus touchés, car leur organisme absorbe proportionnellement plus de plomb que celui des adultes. En effet, le système nerveux des enfants et leur squelette sont en développement continu, et leur absorption digestive est 3 fois plus élevée que celle des adultes. Ceci les rend beaucoup plus sensibles vis-à-vis de l’exposition au plomb. L’intoxication de l'enfant est souvent asymptomatique ; c’est alors durant la scolarisation que des effets comme la baisse du QI, l’anémie, des troubles du comportement, des problèmes de rein, des pertes auditives, se feront ressentir.
    Les risques d’intoxication au plomb sont accrus pour les enfants qui jouent au sol, sont plus en contact avec des poussières ou jouent avec des écailles de peinture ou des objets à base de plomb et portent naturellement souvent les doigts ou les objets à la bouche. En sucant ou manipulant un objet ou jouet en plomb ou peint au plomb, ls peuvent se contaminer avec des microparticules de plomb ou avaler certains objets (grenaille de plomb par exemple). Il arrive qu'ils se fassent les dents sur des objets peints (ex rebords de châssis de fenêtre)[37].
  3. Les personnes âgées : En vieillissant l'organisme élimine moins bien le plomb, et le plomb désorbé de l'os lors d'une ostéoporose passe dans le sang et re-contamine la personne.

Seuils, et doses tolérables : Il n’existe pas vraiment de seuil de tolérance au plomb pour ces catégories de personnes décrites ci-dessus. le toxicologue se réfère néanmoins à différents types de références (seuils, normes ou doses tolérables ou admissibles), dont : « Dose Journalière Admissible » (DJA) , « Dose Journalière Tolérable » (DJT), « Dose hebdomadaire tolérable » (DHT) ou DHTP (« Dose hebdomadaire tolérable provisoire » ; « Dose Limite Annuelle » (DLA)…

Pour fixer quelques ordres de grandeur :

  • Dans l'alimentation, la DHT (dose hebdomadaire tolérable) était en France pour le plomb (avant 2006) provisoirement fixée à 1 500 µg/semaine pour le plomb.
    Pour l'Union européenne, les taux maximaux. en plomb (en mg/kg de poids frais) sont de 0,3 pour la chair (muscle) de poisson, 0,5 pour les crustacés, 1 pour les céphalopodes et 1,5 pour les mollusques bivalves. Depuis (en 2006), l'OMS a réduit la DHT pour le plomb à 25 µg/kg de poids, soit une dose journalière tolérable de 3,6 μg/kg pc/j).
    Ceci signifie que même le plus petit plomb de pêche commercialisé correspond à une quantité de métal toxique significative, s'il est ingéré sous une forme bioassimilable.
  • Pour l'eau potable, la norme en France était de 50 microgrammes par litre jusqu'en décembre 2003, elle est passée à 25 microgrammes par litre et il est prévu de la faire passer à 10 microgrammes par litre en décembre 2013.
    Au Canada, elle est de 10 microgrammes par litre depuis 2001[38] ;
  • Pour les sols, le plomb est naturellement présent (c'est ce qu'on appelle le fond pédogéochimique naturel) à hauteur de quelques dizaines de mg par kg de sol ; par exemple une synthèse des données existantes sur l’état des sols en France (Baize, 1994, 1997), montre que les teneurs en plomb de 11 150 échantillons, prélevés en surface des zones agricoles (avant épandage de boues de station d’épuration), sont relativement dispersées avec une moyenne des teneurs de 30,3 mg/kg pour une médiane de 25,60 mg/kg. Dans un rapport public de synthèse du BRGM[39], on trouve des chiffres de 10 à 30 mg/kg pour des sols non pollués. Localement des apports anciens (séquelles de guerre, industrielle ou utilisation d'arséniate de plomb comme insecticide ont pu modifier les teneurs apparemment « naturelles » du sol) (dès l'antiquité romaine).
  • pour la santé ; Aux États-Unis, la CSPC (Consumer Product Safety Commission) a fixé comme standard qu’une assimilation de plomb équivalent à 175 mg/jour nécessite une visite de contrôle.

Écotoxicologie

Le plomb sous forme pure et fine, sous forme de sels simples ou de composé organique est plus ou moins facilement assimilé par tous les organismes vivants (faune, flore, fonge, bactéries). Il est hautement écotoxique pour presque toutes les espèces connues, hormis de rares exceptions comme quelques bactéries ou de rares plantes métallo-tolérantes comme la variété Armeria maritima hallerii.
Les sels de plomb sont peu solubles dans l'eau salée ou dure (la présence d'autres sels réduit la disponibilité du plomb pour les organismes en raison de précipitations de plomb). Les résultats des tests de toxicité doivent donc être traités avec prudence, sauf quand la dissolution de plomb est mesurée.

  • Champignons : Ils captent et stockent très bien le plomb, et jouent un rôle important dans le cycle toxique du plomb, au point qu'ils pourraient être utilisés pour dépolluer (fongoremédiation).
  • Végétaux : la Biodisponibilité du plomb pour les végétaux est très aggravée en contexte acide ou acidifié et quand le plomb est sous forme de très fines particules. Ainsi pour la salade, le transfert sol-racines-feuilles augmente de 20 % si le plomb y est présent sous forme de PM2,5 plutôt que sous forme de PM10[40]. Certains champignons l'assimilent et le stockent très facilement, sans en mourir, et l'activité rhizosphérique semble favorise la solubilisation du plomb et son transfert dans les plantes, d'autant plus que le sol est acide ou acidifié[40].
  • Invertébrés : le plomb est hautement toxique pour de nombreux invertébrés, particulièrement pour les invertébrés d'eau douce (dès 0,1 et GT 40 mg/L en eau douce[41]). Les invertébrés marins le tolèrent mieux (résistant à des doses 20 fois plus élevées, mais néanmoins avec une toxicité manifeste dès 2,5 et GT 500 mg/L)
    Certains invertébrés montrent des capacités d'adaptation ou se montrent plus "tolérant" au plomb que les autres[41]. Les adaptations de certains invertébrés aquatiques aux conditions hypoxiques peuvent être inhibées par des taux élevés de plomb[41].
    • Nématodes ; S'ils consomment des champignons ou des bactéries contaminés par du plomb, ils présentent des troubles de la reproduction.
    • Crustacés terrestres : Certains comme les Cloportes semblent particulièrement résistants au plomb.
    • Insectes : les larves sont probablement plus vulnérables au plomb que les adultes : Des chenilles nourries avec des aliments contenant des sels de plomb présentent à des troubles du développement et de la reproduction[41].
  • Mammifères : Ils subissent globalement les mêmes effets que l'être humain.
  • Poissons : La toxicité du plomb varie selon les espèces, avec des CL50 96-h allant de 1 à 27 mg/L en eau douce, et 440 à 540 mg/L en eau dure ou salée (le plomb se dissout moins bien dans l'eau dure)[41]. Les œufs et très jeunes poissons y sont plus vulnérables que les adultes ; une difformité spinale et un noircissement de la région caudale font partie des symptômes d'intoxication ; La dose limite toxique maximale acceptable (MATC pour les anglophones) pour le plomb inorganique varie de 0,04 à 0,198 mg/L (selon les espèces et les conditions, mais les composés organiques sont plus toxiques encore ; la présence de calcium ou autres ions non toxiques en solution diminue la toxicité aiguë du plomb[41].
  • Amphibiens : Les œufs de grenouilles et de crapauds sont vulnérables à des teneurs inférieures à 1,0 mg/L en eau stagnante et 0,04 mg/L en eau courante, avec des arrêts de développement de l'œuf ou retards d'incubation. Les grenouilles adultes sont affectées à partir de 5 mg/L dans l'eau, et le plomb ingéré par les amphibiens (insectes contaminés, vers de terre, etc.) a des effets toxiques observés à 10 mg/kg[41].
  • Oiseaux : Des sels de plomb ajoutés dans la nourriture intoxiquent les oiseaux à partir d'environ 100 mg/kg de nourriture. L'exposition de cailles (de l'éclosion à l'âge de la reproduction) à une nourriture contenant 10 mg de plomb par kg induit des effets sur la production d'œufs[41].
    On a peu d'informations sur les effets des composés organoplombiques (Par exemple : des composés trialkyllés affectent les étourneaux dès 0,2 mg/jour, 2 mg/jour étant invariablement fatal[41]).
    L'ingestion de grenaille de plomb est très toxique pour tous les oiseaux. C'est une cause très fréquente de saturnisme aviaire.
    Article détaillé : saturnisme aviaire.

Le plomb dans les jouets

Naissance de la problématique

Depuis 2007, les médias ont relaté de plus en plus de rappels massifs de jouets. De grands groupes comme Mattel, dont plusieurs jouets ont été rappelés en 2007[42],[43], ont eu beaucoup de soucis avec des jouets contaminés au plomb. Ainsi en 2007, l’industrie du jouet (22 millions de dollars) a particulièrement été touchée. Sur 81 rappels de jouets la moitié de ceux-ci impliquait six millions de jouets ayant une peinture à base de plomb excédant les limites autorisées. Le problème vient notamment du fait que les grands groupes comme Mattel sous-traitent leur production dans des pays comme la Thaïlande et la Chine[44],[45] où la réglementation et le contrôle des produits finis sont moins courants. S’ajoute à cela un manque de personnel et de budget pour les sociétés de production ainsi qu’un faible nombre de moyens mis en place au niveau des dépistages. Ce sont les enfants des pays en voie de développement qui sont les plus affectés par un taux de plomb élevé.

C’est en 2006 que la problématique a éclaté au grand jour avec la mort par empoisonnement au plomb d'un enfant âgé de 4 ans aux États-Unis. L'autopsie a révélé la présence d'un pendentif en forme de cœur dans l'abdomen, le pendentif contenait 99,1 % de plomb[46].

Depuis il existe une prise de conscience de la part des pays riches vis-à-vis de ce problème. Ainsi des associations comme « kids in danger » aux États-Unis sont apparues ainsi qu’une ré-actualisation des lois au Québec et en France notamment. Depuis que la problématique est connue de tous, de nombreuses études et analyses ont eu lieu ainsi, de nouveaux composés nocifs ont été trouvés dans les jouets mais les cas restent plus rares (arsenic et phtalates)[47].

Dépistage du saturnisme

La plombémie de l'enfant est généralement mesurée à partir d'une simple piqûre au doigt, à l'hôpital. Le résultat fourni est en µg/L.
Les plombémies détectées chez l'enfant s’étendent de 5 à 1 400 ppm.
Chez l'adulte, une plombémie est considérée comme « normale » si inférieure à 0,4 ppm, et la plomburie doit être inférieure à 0,08 ppm.

D'autres techniques de mesure sont possibles, en particulier dans les pays en voie de développement particulièrement touchés par le saturnisme. La tendance est d'utiliser des biomarqueurs humains, et d'échantillonner autre chose que le sang qui ne traduit que l'intoxication éventuelle du moment, alors que les cheveux[48], dents de lait[49], ou les ongles[50]) ont accumulé du plomb sur une plus longue période. On peut ainsi retrouver dans les cheveux une concentration en plomb 10 fois plus élevée que celle présente dans l'urine ou le sang. Il est aussi plus aisé d'échantillonner, conserver et transporter des phanères (cheveux, ongles) plutôt que des solutions susceptibles de se dégrader.
L'analyse implique de passer d’un composé solide à un liquide (par dissolution à chaud dans un acide fort en général), ce qui permet la destruction de toute matière organique. Pour les dents, l'émail est attaquée par un mélange HCL/glycérol. L'analyse se fait généralement par absorption atomique de flamme. L'utilisation d'échantillons certifiés (CRM) est un des éléments de validation des méthodes.

Un questionnaire vise à rechercher l'origine de l'intoxication. À titre d’exemple, au Kenya un enfant vivant dans une maison peinte avait en moyenne une plombémie de 30,2 ± 2,9 ug/g alors qu'un enfant vivant dans une maison non peinte avait en moyenne une plombémie de 19,8 ± 0,9 ug/g.

Il existe d’autres types de matrices pour lesquelles il est important de connaître le taux de plomb (eau, vin, bières, jus de fruits, fruits et légumes, viandes, poissons, crustacés, champignons, lait, fromages...). Les analyses sont parfois complexes car mettant en jeu de réactions de coprécipitations ou dérivations pour pouvoir travailler avec ce type de matrices.

De nouvelles techniques d'analyse pourraient se développer, dont peut-être les analyses par Spectrométrie de fluorescence des rayons X. Des appareils portables (pistolets de fluorescence à rayons X) permettent de faire un premier diagnostic sur le terrain ; il suffit de pointer le pistolet sur un jouet pour avoir une mesure instantanée du plomb total présent à sa surface ou juste sous sa surface. Ces appareils sont encore couteux (ex : +/- 30 000 dollars pour un analyseur portable[51]).

Des études sur l'animal se poursuivent (rats, souris...) pour évaluer plus finement l'impact de la présence de plomb (dont dans les jouets), sur la physiologie, le comportement et la psychologie du développement, des enfants en particulier[52].

Enfin, des procédés visant à traiter les eaux contaminées existent ou sont actuellement en développement comme des membranes à base de matériaux composites qui après toute une série d’équilibres avec le plomb en solution vont pouvoir le capter intégralement en une soixantaine de minutes[53].

Prévention

Des hôpitaux distribuent dorénavant des fiches explicatives[54] aux parents dans lesquelles ils incitent les familles à venir faire des visites de contrôle de dépistage du plomb surtout s’ils habitent dans une zone à risque (vieilles maisons, proximité d’usines…). Ils leur expliquent aussi notamment quels sont les sources d’intoxication, les risques que cela implique, et comment combattre cela. Ainsi une nourriture riche en fer (haricots, épinards…) et en calcium (fromage, lait...) est préconisée.

Traitement

Au cas où un enfant serait amené à être intoxiqué, son taux de plomb dans le sang peut être abaissé. Pour cela des lavages gastriques ou encore l’ajout d’agent complexant comme l’EDTA peuvent être utilisés. Toutefois ce ne sont que des techniques visant à baisser la teneur en plomb dans l'organisme, mais, en aucun cas, elles ne peuvent éliminer tous les effets négatifs[55].

Données économiques

Le plomb est considéré comme une ressource non renouvelable. Après la faillite et/ou rachat de quelques producteurs importants, le marché est concentré autour des besoins du bâtiment, des batteries, des munitions ainsi que de la radioprotection.

En 2013, le groupe Eco-Bat Technologies qui recycle le plomb de batteries et produit divers produits en plomb ou à base de plomb se présente comme leader en France où il opère sous le nom de marque Le Plomb Français, en Europe et dans le monde.

Prix

Le plomb est un métal stratégique dont le prix de vente est très irrégulier, coté en dollars US, en particulier à la Bourse des métaux de Londres[56]. Sur les dix dernières années, les cours ont évolué entre 400 et 3 665 $ par tonne.

En raison de sa toxicité, les interdictions d’usage du plomb se multiplient dans le monde, ce qui aurait dû faire baisser son prix. Mais paradoxalement, c’est le métal dont le prix a le plus augmenté en 2007, face à la demande chinoise de batteries selon les uns, face à un marché qui s’est refermé et qui est contrôlé par quelques grands groupes selon les autres ; rachats et/ou fermeture d’usines (fermeture de Metaleurop Nord en France par exemple), usines en difficultés pour cause de pollution et problèmes sanitaires (ex : Bourg-Fidèle), fermeture en Australie en 2007 de la mine Magellan (3 % de la production mondiale, plus grande mine du monde), suivie d'une explosion dans une raffinerie (Doe Run) du Missouri qui a encore fait grimper les prix. En 6 mois le prix du plomb a doublé, il a été multiplié par 7 en 4 ans, atteignant un record en octobre 2007 (3 655 dollars/tonne, contre 500 dollars/tonne en 2003). Le 26 juin 2007 son prix dépassait celui de l'aluminium avant de dépasser celui du zinc. 10 ans plus tard, en mars 2017, il se vendait à 2 037 €/t (2 281 $/t), soit + 26,6 % sur un an[57].

Production mondiale

La demande grimpait de 2 % par an jusqu'en 2004 (à 80 % pour fabriquer des batteries). Le stock mondial mi-2007 est tombé à 30 000 tonnes. « Soit 2 jours de consommation »[58]. La Chambre syndicale du plomb voit une vertu positive à cette demande : elle devrait encourager un meilleur recyclage des batteries « (de 130 euros la tonne, leur prix a bondi à 350 euros en un an) »[59].

Consommation mondiale 2004 : 7 082 milliers de tonnes (kt) Production mondiale de plomb métal 2004 : 6 822 kt
Continent Milliers de tonnes
Asie 2 870 2 880
Amériques 2 030 2 009
Europe 2 011 1 551
Afrique 131 101
Océanie 40 281
Production minière[d]:

les principaux producteur en 2014[60] :

Pays production % mondial
1 Chine 2 850 000 t 52,6 %
2 Australie 711 000 t 13,1 %
3 États-Unis 340 000 t 6,3 %
4 Pérou 266 500 t 4,9 %
5 Mexique 250 000 t 4,6 %
6 Russie 143 000 t 2,6 %
7 Inde 105 000 t 1,9 %
8 Bolivie 82 100 t 1,5 %
9 Turquie 78 000 t 1,4 %
10 Suède 59 600 t 1,1 %
Total monde 5 414 000 t 100 %

Le plomb métallique est produit dans des usines appelées fonderies (voir ci-dessus chapitre métallurgie), dont les matières premières proviennent soit de mines (concentrés miniers) soit du recyclage (en particulier le recyclage des batteries usagées). Sur les 6,8 millions de tonnes de production, environ 3 millions proviennent de concentrés miniers et 3,8 millions du recyclage.

Le recyclage est devenu maintenant la première source de plomb.

En résumé, il est important de se souvenir que la consommation mondiale de plomb ne cesse d’augmenter depuis le Moyen Âge. Depuis deux décennies, elle a tendance à stagner dans les pays développés car ceux-ci ont pris conscience des dangers liés à sa toxicité. Ils ont cherché des substituts au plomb et ont mis en place un certain nombre de normes liées à son utilisation. Par contre, les pays en voie de développement continuent de l’utiliser et leur consommation de plomb ne cesse d’augmenter faute de moyens[14].

Réglementation

Le plomb doit légalement être recherché dans l'eau potable, l'air et les aliments, où il ne doit pas dépasser certaines doses.
Il a peu à peu été interdit pour un certain nombre d'usages (en commençant par les peintures et les contenants alimentaires). Cette réglementation varie selon les pays et les époques.

  • À titre d'exemple : le 1er juillet 2006, la Directive RoHS limite son usage dans certains produits commercialisés en Europe ; usage limités à 0,1 % du poids de matériau homogène (cette Directive pourra être élargie à d'autres produits et à d'autres toxiques). À noter que des listes d'exemptions autorisent des seuils supérieurs à cette valeur, pour certaines catégories de matériaux.

Symbolique

  • Les noces de plomb symbolisent les 14 ans de mariage dans la tradition française.
  • Le plomb est le 5e niveau dans la progression de la Sarbacane Sportive.
  • Le plomb symbolise la lourdeur, l'oppression : Un sommeil de plomb. Un soleil de plomb. Un projet qui a du plomb dans l'aile.

Calendrier républicain

Commerce

En 2014, la France est nette importatrice de plomb, d'après les douanes françaises. Le prix moyen à la tonne à l'import était de 1 830 €[62].


AluminiumArsenical copperBérylliumBismuthChromeCobaltCuivreGalliumVerreOrIndiumFerMatière plastiquePlexiglasAcier inoxydableAcierStructural steelMercuryNickelPlutoniumRhodiumArgentSamariumÉtainUraniumZincZirconiumAluminium-lithium alloyAimant AlNiCoBirmabrightAlliages d'aluminium pour corroyage#Série 2000 (aluminium cuivre)HiduminiumHydronaliumItalmaMagnaliumAluminium alloyY alloyMétal de WoodRose's metalChromium hydrideNichromeMegalliumStellite (alliage)VitalliumBronze au bérylliumBillon (alliage)LaitonCalamine brassChinese silverDutch metalLaiton rougeMuntz metalPinchbeck (alloy)TombacBronzeCuproaluminiumBronze arséniéBell metalFlorentine bronzeGlucydurGuanín (bronze)GunmetalBronze phosphoreuxDorure#Dorure au mercureSpeculum metalConstantanCopper hydrideCopper–tungstenBronze de CorintheCunifeCupronickelCymbal alloysAlliage de DevardaÉlectrumHepatizonManganinMaillechortMolybdochalkosOr nordiqueShakudōTumbagaAlGaGalfenolGalinstanColored goldrhoditeCrown goldÉlinvarField's metalFernicoFerroalliagePierre à briquetFerrochromeFerromanganèseFerromolybdèneFerrosiliciumFerrotitaneFerrouraniumInvarFonte (métallurgie)Hydrure de ferFonte bruteKanthalKovarStaballoyBulat steelAcier au creuset41xx steelAcier de DamasMangalloyAcier rapideMushet steelAcier maragingHigh-strength low-alloy steelReynolds 531Fer douxSpring steelAL-6XNCelestriumAlloy 20Marine grade stainlessMartensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelAcier à outilsAcier CortenWootzSolderTernePlomb typographiqueElektronAmalgame (métallurgie)Magnox (alloy)AlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNitinolMu-métalPermalloySupermalloyHydrure de nickelAlliage plutonium-galliumNaKMischmétalLithiumTerfenol-DPseudo palladiumScandium hydrideAimant samarium-cobaltArgentium sterling silverArgent BritanniaDoré bullionGoloidPlatinum sterlingShibuichiArgent sterlingTibetan silverTitanium Beta CAlliage de titaneHydrure de titaneGum metalTitanium goldNitrure de titaneBabbitt (alloy)BritanniumAlliage plomb-étainQueen's metalWhite metalHydrure d'uranium(III)ZamakZirconium hydrideDirective RoHSHydrogèneHéliumBoreAzoteOxygèneFluorMéthaneMezzanine (architecture)Atome

This article uses material from the Wikipedia article "Plomb", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material,restrictions,data sheet,specification