powered by CADENAS

Social Share

Méthodes de refroidissement pour ordinateur (12051 views - Electronics & PCB Engineering)

Les méthodes de refroidissement pour ordinateur sont les moyens permettant de réduire la température de certains composants d'ordinateur afin de prévenir leur surchauffe. La majorité des composants d'un ordinateur chauffent, allant d'une très faible production de chaleur pour les lecteurs optiques, à une production beaucoup plus importantes pour le microprocesseur par exemple. Un échauffement normal est sans conséquence, mais une surchauffe de ces composants peut entraîner des dysfonctionnements (erreurs de calculs, bugs, redémarrages intempestifs, etc), pouvant parfois aller jusqu’à leur détérioration. À l'heure actuelle, la majorité des composants exposés à de fortes températures sont dotés de sondes et de sécurités qui les protègent. Les circuits intégrés sont les composants électroniques qui chauffent le plus, ils sont situés sur la carte mère et sur la carte graphique entre autres. La plupart du temps, le simple contact de la surface du circuit intégré avec l'air ambiant permet d'assurer son refroidissement, mais certains de ces circuits chauffent trop pour que le contact avec l'air ambiant suffise. Les processeurs, par exemple, sont composés de millions de transistors qui, lors de leur fonctionnement, dégagent beaucoup de chaleur ; il est alors nécessaire de leur adjoindre un dispositif de refroidissement afin de réduire leur température.
Go to Article

Explanation by Hotspot Model

Méthodes de refroidissement pour ordinateur

Méthodes de refroidissement pour ordinateur

Les méthodes de refroidissement pour ordinateur sont les moyens permettant de réduire la température de certains composants d'ordinateur afin de prévenir leur surchauffe. La majorité des composants d'un ordinateur chauffent, allant d'une très faible production de chaleur pour les lecteurs optiques, à une production beaucoup plus importantes pour le microprocesseur par exemple. Un échauffement normal est sans conséquence, mais une surchauffe de ces composants peut entraîner des dysfonctionnements (erreurs de calculs, bugs, redémarrages intempestifs, etc), pouvant parfois aller jusqu’à leur détérioration. À l'heure actuelle, la majorité des composants exposés à de fortes températures sont dotés de sondes et de sécurités qui les protègent.

Les circuits intégrés sont les composants électroniques qui chauffent le plus, ils sont situés sur la carte mère et sur la carte graphique entre autres. La plupart du temps, le simple contact de la surface du circuit intégré avec l'air ambiant permet d'assurer son refroidissement, mais certains de ces circuits chauffent trop pour que le contact avec l'air ambiant suffise. Les processeurs, par exemple, sont composés de millions de transistors qui, lors de leur fonctionnement, dégagent beaucoup de chaleur ; il est alors nécessaire de leur adjoindre un dispositif de refroidissement afin de réduire leur température.

Principaux éléments producteurs de chaleur

Les principaux éléments d'un ordinateur qui produisent de la chaleur sont les suivants :

Méthodes de refroidissement

Refroidissement à air

Le refroidissement à air, (en anglais aircooling), est le principe de refroidissement qui utilise l'air comme fluide de refroidissement. Il est simple à mettre en œuvre, suffisamment efficace dans la majorité des cas, économique, et n'est pas dangereux.
Il peut être classé suivant deux catégories :

Refroidissement passif 
Le terme passif indique ici qu'aucune pièce mécanique n'est en mouvement. Un simple dissipateur (un radiateur) est fixé sur le composant à refroidir, afin d'augmenter la surface de contact avec l'air ambiant, et donc de faciliter la dissipation thermique. Il a été le premier système à être utilisé, sur les transistors de puissance, puis sur les microprocesseurs (par exemple le Pentium), à partir du moment où ils ont commencé à chauffer de manière trop importante. Son utilisation a évolué au fil du temps, pour maintenant refroidir les northbridge, certains processeurs graphiques entrée de gamme, la mémoire vive, ou encore les MOSFET sur la carte mère.
Refroidissement actif 
Par rapport au refroidissement passif, un ventilateur est ajouté au radiateur (formant ainsi un bloc souvent appelé ventirad ou heatsink), afin de créer un flux d'air autour du radiateur afin d'accélérer le transfert thermique entre l'air et les ailettes du radiateur.
Ce système est devenu un standard pour le refroidissement du microprocesseur, dans la mesure où la grande majorité de ceux-ci sont livrés avec un ventirad, ou au moins sont destinés à fonctionner avec celui-ci.
Les processeurs graphiques milieu de gamme et haut de gamme actuels en sont également munis, ainsi que la majorité des blocs d'alimentation.
Les principaux défauts d'un refroidissement actif sont le bruit émis par le souffle du ventilateur, ainsi que l'accumulation de poussière dans l'ordinateur s'il n'y a pas de filtre à air.
Les radiateurs sont parfois dotés de caloducs, qui permettent d'emmener la chaleur émise par le composant loin de celui-ci, jusqu’à l'endroit où elle va être dissipée dans l'air.

Refroidissement liquide

Il existe deux types de refroidissement utilisant un liquide caloporteur :

Refroidissement à eau 
(en anglais watercooling) est un dispositif faisant circuler de l'eau, bien meilleure conductrice thermique que l'air, à l'aide d'une pompe dans un circuit qui passe dans un ou plusieurs waterblocks. Ces waterblocks, situés sur les composants à refroidir, permettent un transfert thermique entre l'eau et le composant.
À l'origine réservée aux systèmes très performants, comme les supercalculateurs, cette méthode a ensuite été reprise et adaptée pour son utilisation au quotidien dans les ordinateurs, étant bien souvent plus performante que l'aircooling. Elle reste malgré tout encore un peu plus complexe que l'aircooling à mettre en place, et un peu plus dangereuse à cause de la cohabitation entre l'eau et l'électricité.
Le silence de fonctionnement est un autre atout du refroidissement à l'eau, dans le cas d'un système sans ventilateur, même si les performances sont un peu moindres dans ce cas.
Refroidissement à huile 
Rarement utilisé[réf. nécessaire], le refroidissement à huile consiste à immerger tous les composants dans de l'huile végétale ou minérale, afin de les refroidir uniformement. Cette méthode a pour avantage d'avoir un ordinateur totalement silencieux et totalement immergé dans un liquide, et donc d'avoir un refroidissement uniforme. Pour pouvoir immerger des composants dans un liquide, il faut que celui-ci soit diélectrique. Utiliser l'huile végétale présente de nombreux inconvénients : elle rancit avec le temps, n'est pas transparente et dégage une odeur de friture, mais les huiles minérales sont potentiellement cancérigènes si elles sont portées à des température élevées[1]. Le refroidissement à l'huile permet d'éviter tout ventilateur et donc de réduire la consommation électrique de l'ordinateur[réf. nécessaire]. En Europe, ce type de refroidissement n'est pas commercialisé au grand public. Cependant, de nombreux particuliers ont déjà tenté l'expérience d'immersion dans l'huile[2][réf. insuffisante].

Refroidissement à changement de phase

Phase-change cooling

Basé sur le principe de la pompe à chaleur, le phase-change cooling permet le changement de phase d'un fluide frigorigène. Les températures atteintes sont alors de l'ordre de au niveau de l'évaporateur (situé sur le composant), et donc une température négative est atteinte pour le composant.

Waterchiller

Un waterchiller est un système combinant le watercooling avec le « phase-change cooling » afin de profiter des avantages des deux méthodes. Le liquide circulant dans le circuit du watercooling est refroidi grâce à un système de « phase-change cooling », ainsi on obtient un très bon refroidissement (avantage du phase-change) pour plusieurs composants à la fois (avantage du watercooling).

Effet Peltier

Les plaques à effet Peltier permettent, grâce à une des deux plaques, de refroidir à des températures négatives les composants où elles sont fixées. Elles ne peuvent cependant être utilisées seules : la deuxième chauffant beaucoup, il est nécessaire d'y adjoindre un autre système de refroidissement assez performant, tel qu'un watercooling ou un système de phase-change cooling.

Refroidissement extrême

Refroidissement à l'azote liquide

Le Refroidissement à azote liquide permet un refroidissement extrême grâce à l'utilisation à une température de −196 °C. Ses défauts proviennent de :

  • l'évaporation de l'azote liquide (LN2) : il est nécessaire d'alimenter régulièrement le système en LN2, ce qui le rend inapproprié à un usage régulier ;
  • la condensation de l'humidité de l'air sur la tour qui peut provoquer des courts-circuits si l'eau atteint l'électronique de la carte mère.

Refroidissement à la glace sèche

Très semblable au LN2 cooling, il utilise de la glace carbonique à −78 °C. Cette glace se sublime en Modèle:Co2 dans l'air, ce qui rend ce système compliqué à utiliser de façon prolongée, du fait du renouvellement fréquent de la neige carbonique et de la difficulté de son stockage.

Cascades

Les cascades sont plusieurs systèmes à changement de phase montés en série, qui permettent à chaque étage d'utiliser un autre fluide frigorigène ayant une température de vaporisation plus faible à chaque fois. Avec quatre étages on peut par exemple utiliser de l'azote liquide pour le dernier étage, et donc obtenir un refroidissement aussi performant qu'avec l'azote liquide, mais sans son défaut : l'évaporation dans l'air ambiant. Un tel système peut fonctionner pendant une très longue durée sans remplissage, aucun fluide ne sortant de son circuit.

Optimisations

Flux d'air

La génération d'un flux d'air à l'intérieur de la tour est important, dans la mesure où il permet le refroidissement des composants ne disposant pas de système de refroidissement, et une meilleure efficacité de la part des radiateurs et des ventirad. Ce flux d'air est créé grâce à des ventilateurs de boîtier, de diamètres et de vitesses de rotation différents. On en distingue deux utilisations :

  • en extraction (blowhole), souvent à l'arrière et sur le haut de la tour ;
  • en aspiration (suckhole), souvent à l'avant et sur le côté de la tour (voire depuis le bas également).

Les nappes IDE par exemple risquent de constituer des obstacles à la circulation de l'air, c'est pourquoi il est conseillé d'utiliser des gaines rondes, afin de diminuer la largeur de ces nappes, ou de relier les périphériques à l'aide de câbles ronds. Ces derniers présentent de nombreux avantages comparés aux nappes :

  • leur forme tubulaire garantit une meilleure circulation de l'air.
  • esthétique, les fans de tuning PC en sont très friands.
  • plus flexibles, faciles à manipuler et à connecter, les nappes sont souvent trop rigides et il faut se contorsionner ou les plier pour les brancher à la carte mère.

Pâte thermique

L'utilisation de pâte thermique entre les composants et leur système de refroidissement est indispensable, afin d'éliminer l'air présent entre les deux surfaces, la conductivité thermique de l'air étant faible comparée à celle de la pâte thermique.

Poussière

De la poussière s'accumule généralement au fil du temps sur les radiateurs, à cause de leur forme. Elle constitue alors un obstacle à la dissipation de la chaleur dans l'air. Il est donc important de nettoyer le radiateur afin de conserver des performances optimales.

Surfréquençage

Le surfréquençage, plus souvent appelé overclocking, consiste à dépasser la fréquence de fonctionnement d'un composant, prescrite par le constructeur, afin d'améliorer ses performances. Plus cette fréquence est élevée, plus le composant va chauffer[3], et le système va donc devenir instable. Le potentiel d'overclocking va donc beaucoup dépendre du refroidissement du composant. C'est pourquoi, lors de tentatives d'overclocking très important, afin d'établir de nouveaux records par exemple, une place très importante est accordée au refroidissement, et l'extreme cooling est alors privilégié. Il existe des concours d'overcloking organisés chaque année. Pendant le CES 2014, GIGABYTE® et ses sponsors décrochent 3 records mondiaux en utilisant de l'azote liquide[4].

Centres informatiques

Dans les datacenters le refroidissement des machines (serveurs, systèmes de stockage, équipements réseau, etc.) est essentiel pour le bon fonctionnement des systèmes. Pour cela, l'une des méthodes employées consiste à suivre le principe de l'alternance entre « allée froide » (où arrive l'air frais) et « allée chaude » après passage par les racks où l'air est aspiré par des ventilateurs[5].



This article uses material from the Wikipedia article "Méthodes de refroidissement pour ordinateur", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Electronics & PCB Engineering

Cadence, Mentor Graphics, Eagle CAD, Altium Designer, AUTODESK EAGLE, Cadence Allegro, DesignSpark PCB , Mentor PADS, Mentor Xpedition, Novarm DipTrace, Pulsonix, TARGET 3001!, Xpedition xDX Designer, Zuken CADSTAR, Altium P-CAD, Agnisys, Altera Quartus, OrCAD, kiCAD, Solido Design Automation, ELectronics, PCB, Curcuit Board, 3D drawings, 3D library, 3D content, PCB Design, 2D symbols, 2D drawings, 2D icons, 2D schematics