Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution-Share Alike 2.5 (No machine-readable author provided. Abuelodelanada assumed (based on copyright claims).).
Los sensores inductivos son una clase especial de sensores que sirve para detectar materiales ferrosos. Son de gran utilización en la industria, tanto para aplicaciones de posicionamiento como para detectar la presencia o ausencia de objetos metálicos en un determinado contexto: detección de paso, de atasco, de codificación y de conteo.
Una corriente (i) que circula a través de un hilo conductor, genera un campo magnético que está asociado a ella.
Los sensores de proximidad inductivos contienen un devanado interno. Cuando una corriente circula por el mismo, un campo magnético es generado, que tiene la dirección de las flechas anaranjadas. Cuando un metal es acercado al campo magnético generado por el sensor de proximidad, éste es detectado.
La bobina, o devanado, del sensor inductivo induce corrientes de Foucault en el material por detectar. Estas, a su vez, generan un campo magnético que se opone al de la bobina del sensor, causando una reducción en la inductancia de la misma. Esta reducción en la inductancia de la bobina interna del sensor trae aparejado una disminución en la impedancia de ésta.
La inductancia es un valor intrínseco de las bobinas o inductores, que depende del diámetro de las espiras y el número de ellas. En sistemas de corriente alterna, la reactancia inductiva se opone al cambio del sentido de la corriente y se calcula de la siguiente manera:
Donde:
El oscilador podrá generar nuevamente el campo magnético con su amplitud normal. Es en este momento en que el circuito detector nuevamente detecta este cambio de impedancia y envía una señal al amplificador de salida para que sea éste quien, nuevamente, restituya el estado de la salida del sensor.
Si el sensor tiene una configuración “Normal Abierta”, este activará la salida cuando el metal a detectar ingrese en la zona de detección. Lo opuesto ocurre cuando el sensor tiene una configuración "Normal Cerrada". Estos cambios de estado son evaluados por unidades externas tales como: PLCss, relés, PCs, etc.
Estos son los bloques que habitualmente constituyen un sensor inductivo, aunque en algunos modelos el amplificador de salida puede estar implementado en otro dispositivo con carcasa independiente, para reducir el tamaño del sensor.
En función de la distancia entre el sensor y el objeto, el primero mantendrá una señal de salida (ver figura inferior):
1.- Objeto a detectar ausente:
2.- Objeto a detectar acercándose a la zona de detección:
3.- Objeto a detectar se retira de la zona de detección:
Los blindados tienen un agregado al núcleo y un blindaje metálico que limita el campo magnético al frente del sensor. | Los no blindados no tienen blindaje extra, resultando en un área de sensado mayor. |
Características:
|
Características:
|
Los sensores blindados, al tener todo el cuerpo roscado son más resistentes a los golpes que los no blindados y además permiten el enrasado si bien su zona de muestreo se limita al frontal del sensor.
Se denomina histéresis a la diferencia entre la distancia de activación y desactivación. Cuando un objeto metálico se acerca al sensor inductivo, éste lo detecta a la "distancia de detección" o "distancia de sensado". Cuando el mismo objeto es alejado, el sensor no lo deja de detectar inmediatamente, sino cuando alcanza la "distancia de reset" o "distancia de restablecimiento", que es igual a la "distancia de detección" más la histéresis propia del sensor.
La distancia de sensado (Sn) especificada en la hoja de datos de un sensor inductivo está basada en un objeto de estándar con medidas de 1" x 1" de hierro dulce. Este valor variará sensiblemente si se quiere detectar otros tipos de metales, incluso con materiales ferrosos como el acero inoxidable (SS). Para otros no ferroros, como el aluminio, pueden ser detectados, pero a menores distancias.
En el siguiente gráfico se puede ver como varía la distancia de detección en función del material a detectar y el tamaño del mismo.
Alcance nominal (Sn): Alcance convencional que sirve para designar el aparato. No tiene en cuenta las dispersiones (fabricación, temperatura, tensión).
Alcance real (Sr): El alcance real se mide con la tensión de alimentación asignada (Un) y a la temperatura ambiente asignada (Tn). Debe estar comprendida entre el 90% y el 110% del alcance real (Sn): 0,9Sn < Sr < 1,1Sn
Alcance útil (Su): El alcance útil se mide dentro de los límites admisibles de la temperatura ambiente (Ta) y de la tensión de la alimentación (Ub). Debe estar comprendida entre el 90% y el 110% del alcance real: 0,9Sr < Su < 1,1Sr
Alcance de trabajo (Sa): Es el campo de funcionamiento del aparato. Está comprendido entre el 0 y el 81% del alcance nominal (Sn): 0 < Sa < 0,9Sn
4.2.6. Normativa
Las normas referentes a los tipos o grados de protección son:NEMA
TIPO 1: Propósito general. Envolvente destinada a prevenir de contactos accidentales con los aparatos.
TIPO 2: Hermético a gotas. Previene contra contactos accidentales que pueden producirse por condensación de gotas o salpicaduras.
TIPO 3: Resistencia a la intemperie. Para instalación en el exterior.
TIPO 3R: Hermético a la lluvia.
TIPO 4: Hermético al agua. Protege contra chorro de agua.
TIPO 5: Hermético al polvo.
TIPO 6: Sumergible en condiciones especificadas de presión y tiempo.
TIPO 7: Para emplazamientos peligrosos Clase I. El circuito de ruptura de corriente actúa al aire.
TIPO 8: Para emplazamientos peligrosos Clase I. Los aparatos están sumergidos en aceite.
TIPO 9: Para emplazamientos peligroso Clase II y funcionamiento intermitente.
TIPO 10: A prueba de explosión.
TIPO 11: Resistente a ácidos o gases.
TIPO 12: Protección contra polvo, hilos, fibras, hojas, rebose de aceite sobrante o refrigerante.
TIPO 13: Protección contra polvo. Protege de contactos accidentales y de que su operación normal no se interfiera por la entrada de polvo
DIN
La norma DIN 40 050 establece el grado de protección IP; éste se compone de dos dígitos:
El primero indica la protección contra sólidos.
El segundo indica la protección contra el agua.
Cuerpos sólidos | Agua |
0 No está protegido contra el ingreso de cuerpos extraños. | 0 Sin protección. |
1 Protegido contra ingreso de cuerpos extraños de hasta 50 mm de diámetro. | 1 Protección contra el goteo de agua condensada. |
2 Protegido contra ingreso de cuerpos extraños de hasta 12 mm de diámetro. | 2 Protección contra el goteo hasta 15° de la vertical. |
3 Protegido contra ingreso de cuerpos extraños de hasta 2.5 mm de diámetro. | 3 Protección contra lluvia con ángulo inferior a 60°. |
4 Protegido contra ingreso de cuerpos extraños de hasta 1 mm de diámetro. | 4 Protección contra salpicaduras en cualquier dirección. |
5 Protección contra depósito de polvo. | 5 Protección contra el chorreo de agua en cualquier dirección. |
6 Protección contra ingreso de polvo. | 6 Protección contra ambientes propios de las cubiertas de los barcos. |
7 Protección contra la inmersión temporal. | |
8 Protección contra la inmersión indefinida. |
Debido al principio por el cual el sensor detecta a los elementos metálicos, los campos magnéticos, la presencia de campos magnéticos externos pueden provocar falsas detecciones o no detecciones, para evitarlo existen sensores inductivos con inmunidad a campos magnéticos variables, como los generados por máquinas de soldar que utilizan grandes flujos de corriente eléctrica.
Estos sensores están principalmente fabricados sin núcleo de material ferromagnético, es decir el núcleo es de aire, a su vez, normalmente, están compuesto por dos bobinas en tándem o perpendiculares para trabajar con un diferencial eléctrico y no con el factor de calidad Q propio del sensor.
This article uses material from the Wikipedia article "Sensor inductivo", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD