### Mandelbulb (1742 views - Animation & Rendering )

The Mandelbulb is a three-dimensional fractal, constructed by Daniel White and Paul Nylander using spherical coordinates in 2009. A canonical 3-dimensional Mandelbrot set does not exist, since there is no 3-dimensional analogue of the 2-dimensional space of complex numbers. It is possible to construct Mandelbrot sets in 4 dimensions using quaternions and bicomplex numbers. White and Nylander's formula for the "nth power" of the vector v = ⟨ x , y , z ⟩ {\displaystyle {\mathbf {v} }=\langle x,y,z\rangle } in ℝ3 is v n := r n ⟨ sin ⁡ ( n θ ) cos ⁡ ( n ϕ ) , sin ⁡ ( n θ ) sin ⁡ ( n ϕ ) , cos ⁡ ( n θ ) ⟩ {\displaystyle {\mathbf {v} }^{n}:=r^{n}\langle \sin(n\theta )\cos(n\phi ),\sin(n\theta )\sin(n\phi ),\cos(n\theta )\rangle } where r = x 2 + y 2 + z 2 {\displaystyle r={\sqrt {x^{2}+y^{2}+z^{2}}}} , ϕ = arctan ⁡ ( y / x ) = arg ⁡ ( x + y i ) {\displaystyle \phi =\arctan(y/x)=\arg(x+yi)} , and θ = arctan ⁡ ( x 2 + y 2 / z ) = arccos ⁡ ( z / r ) {\displaystyle \theta =\arctan({\sqrt {x^{2}+y^{2}}}/z)=\arccos(z/r)} . The Mandelbulb is then defined as the set of those c {\displaystyle {\mathbf {c} }} in ℝ3 for which the orbit of ⟨ 0 , 0 , 0 ⟩ {\displaystyle \langle 0,0,0\rangle } under the iteration v ↦ v n + c {\displaystyle {\mathbf {v} }\mapsto {\mathbf {v} }^{n}+{\mathbf {c} }} is bounded. For n > 3, the result is a 3-dimensional bulb-like structure with fractal surface detail and a number of "lobes" depending on n. Many of their graphic renderings use n = 8. However, the equations can be simplified into rational polynomials when n is odd. For example, in the case n = 3, the third power can be simplified into the more elegant form: ⟨ x , y , z ⟩ 3 = ⟨ ( 3 z 2 − x 2 − y 2 ) x ( x 2 − 3 y 2 ) x 2 + y 2 , ( 3 z 2 − x 2 − y 2 ) y ( 3 x 2 − y 2 ) x 2 + y 2 , z ( z 2 − 3 x 2 − 3 y 2 ) ⟩ {\displaystyle \langle x,y,z\rangle ^{3}=\left\langle \ {\frac {(3z^{2}-x^{2}-y^{2})x(x^{2}-3y^{2})}{x^{2}+y^{2}}},{\frac {(3z^{2}-x^{2}-y^{2})y(3x^{2}-y^{2})}{x^{2}+y^{2}}},z(z^{2}-3x^{2}-3y^{2})\right\rangle } . The Mandelbulb given by the formula above is actually one in a family of fractals given by parameters (p,q) given by: v n := r n ⟨ sin ⁡ ( p θ ) cos ⁡ ( q ϕ ) , sin ⁡ ( p θ ) sin ⁡ ( q ϕ ) , cos ⁡ ( p θ ) ⟩ {\displaystyle {\mathbf {v} }^{n}:=r^{n}\langle \sin(p\theta )\cos(q\phi ),\sin(p\theta )\sin(q\phi ),\cos(p\theta )\rangle } Since p and q do not necessarily have to equal n for the identity |vn|=|v|n to hold. More general fractals can be found by setting v n := r n ⟨ sin ⁡ ( f ( θ , ϕ ) ) cos ⁡ ( g ( θ , ϕ ) ) , sin ⁡ ( f ( θ , ϕ ) ) sin ⁡ ( g ( θ , ϕ ) ) , cos ⁡ ( f ( θ , ϕ ) ) ⟩ {\displaystyle {\mathbf {v} }^{n}:=r^{n}\langle \sin(f(\theta ,\phi ))\cos(g(\theta ,\phi )),\sin(f(\theta ,\phi ))\sin(g(\theta ,\phi )),\cos(f(\theta ,\phi ))\rangle } for functions f and g.
Go to Article

## Mandelbulb

### Mandelbulb The Mandelbulb is a three-dimensional fractal, constructed by Daniel White and Paul Nylander using spherical coordinates in 2009.

A canonical 3-dimensional Mandelbrot set does not exist, since there is no 3-dimensional analogue of the 2-dimensional space of complex numbers. It is possible to construct Mandelbrot sets in 4 dimensions using quaternions and bicomplex numbers.

White and Nylander's formula for the "nth power" of the vector ${\mathbf {v} }=\langle x,y,z\rangle$ in 3 is

${\mathbf {v} }^{n}:=r^{n}\langle \sin(n\theta )\cos(n\phi ),\sin(n\theta )\sin(n\phi ),\cos(n\theta )\rangle$ where
$r={\sqrt {x^{2}+y^{2}+z^{2}}}$ ,
$\phi =\arctan(y/x)=\arg(x+yi)$ , and
$\theta =\arctan({\sqrt {x^{2}+y^{2}}}/z)=\arccos(z/r)$ .

The Mandelbulb is then defined as the set of those ${\mathbf {c} }$ in 3 for which the orbit of $\langle 0,0,0\rangle$ under the iteration ${\mathbf {v} }\mapsto {\mathbf {v} }^{n}+{\mathbf {c} }$ is bounded. For n > 3, the result is a 3-dimensional bulb-like structure with fractal surface detail and a number of "lobes" depending on n. Many of their graphic renderings use n = 8. However, the equations can be simplified into rational polynomials when n is odd. For example, in the case n = 3, the third power can be simplified into the more elegant form:

$\langle x,y,z\rangle ^{3}=\left\langle \ {\frac {(3z^{2}-x^{2}-y^{2})x(x^{2}-3y^{2})}{x^{2}+y^{2}}},{\frac {(3z^{2}-x^{2}-y^{2})y(3x^{2}-y^{2})}{x^{2}+y^{2}}},z(z^{2}-3x^{2}-3y^{2})\right\rangle$ .

The Mandelbulb given by the formula above is actually one in a family of fractals given by parameters (p,q) given by:

${\mathbf {v} }^{n}:=r^{n}\langle \sin(p\theta )\cos(q\phi ),\sin(p\theta )\sin(q\phi ),\cos(p\theta )\rangle$ Since p and q do not necessarily have to equal n for the identity |vn|=|v|n to hold. More general fractals can be found by setting

${\mathbf {v} }^{n}:=r^{n}\langle \sin(f(\theta ,\phi ))\cos(g(\theta ,\phi )),\sin(f(\theta ,\phi ))\sin(g(\theta ,\phi )),\cos(f(\theta ,\phi ))\rangle$ for functions f and g.

## Contents

Other formulae come from identities which parametrise the sum of squares to give a power of the sum of squares such as:

$(x^{2}-y^{2}-z^{2})^{2}+(2xz)^{2}+(2xy)^{2}=(x^{2}+y^{2}+z^{2})^{2}$ which we can think of as a way to square a triplet of numbers so that the modulus is squared. So this gives, for example:

$x\rightarrow x^{2}-y^{2}-z^{2}+x_{0}$ $y\rightarrow 2xz+y_{0}$ $z\rightarrow 2xy+z_{0}$ or various other permutations. This 'quadratic' formula can be applied several times to get many power-2 formulae.

## Cubic formula

Other formulae come from identities which parametrise the sum of squares to give a power of the sum of squares such as:

$(x^{3}-3xy^{2}-3xz^{2})^{2}+(y^{3}-3yx^{2}+yz^{2})^{2}+(z^{3}-3zx^{2}+zy^{2})^{2}=(x^{2}+y^{2}+z^{2})^{3}$ which we can think of as a way to cube a triplet of numbers so that the modulus is cubed. So this gives:

$x\rightarrow x^{3}-3x(y^{2}+z^{2})+x_{0}$ or other permutations.

$y\rightarrow -y^{3}+3yx^{2}-yz^{2}+y_{0}$ $z\rightarrow z^{3}-3zx^{2}+zy^{2}+z_{0}$ for example. This reduces to the complex fractal $w\rightarrow w^{3}+w_{0}$ when z=0 and $w\rightarrow {\overline {w}}^{3}+w_{0}$ when y=0.

There are several ways to combine two such cubic transforms to get a power-9 transform which has slightly more structure.

## Quintic formula

Another way to create Mandelbulbs with cubic symmetry is by taking the complex iteration formula $z\rightarrow z^{4m+1}+z_{0}$ for some integer m and adding terms to make it symmetrical in 3 dimensions but keeping the cross-sections to be the same 2 dimensional fractal. (The 4 comes from the fact that $i^{4}=1$ .) For example, take the case of $z\rightarrow z^{5}+z_{0}$ . In two dimensions where $z=x+iy$ this is:

$x\rightarrow x^{5}-10x^{3}y^{2}+5xy^{4}+x_{0}$ $y\rightarrow y^{5}-10y^{3}x^{2}+5yx^{4}+y_{0}$ This can be then extended to three dimensions to give:

$x\rightarrow x^{5}-10x^{3}(y^{2}+Ayz+z^{2})+5x(y^{4}+By^{3}z+Cy^{2}z^{2}+Byz^{3}+z^{4})+Dx^{2}yz(y+z)+x_{0}$ $y\rightarrow y^{5}-10y^{3}(z^{2}+Axz+x^{2})+5y(z^{4}+Bz^{3}x+Cz^{2}x^{2}+Bzx^{3}+x^{4})+Dy^{2}zx(z+x)+y_{0}$ $z\rightarrow z^{5}-10z^{3}(x^{2}+Axy+y^{2})+5z(x^{4}+Bx^{3}y+Cx^{2}y^{2}+Bxy^{3}+y^{4})+Dz^{2}xy(x+y)+z_{0}$ for arbitrary constants A,B,C and D which give different Mandelbulbs (usually set to 0). The case $z\rightarrow z^{9}$ gives a Mandelbulb most similar to the first example where n=9. A more pleasing result for the fifth power is got basing it on the formula: $z\rightarrow -z^{5}+z_{0}$ .

## Power nine formula

This fractal has cross-sections of the power 9 Mandelbrot fractal. It has 32 small bulbs sprouting from the main sphere. It is defined by, for example:

$x\rightarrow x^{9}-36x^{7}(y^{2}+z^{2})+126x^{5}(y^{2}+z^{2})^{2}-84x^{3}(y^{2}+z^{2})^{3}+9x(y^{2}+z^{2})^{4}+x_{0}$ $y\rightarrow y^{9}-36y^{7}(z^{2}+x^{2})+126y^{5}(z^{2}+x^{2})^{2}-84y^{3}(z^{2}+x^{2})^{3}+9y(z^{2}+x^{2})^{4}+y_{0}$ $z\rightarrow z^{9}-36z^{7}(x^{2}+y^{2})+126z^{5}(x^{2}+y^{2})^{2}-84z^{3}(x^{2}+y^{2})^{3}+9z(x^{2}+y^{2})^{4}+z_{0}$ These formula can be written in a shorter way:

$x\rightarrow {\frac {1}{2}}(x+i{\sqrt {y^{2}+z^{2}}})^{9}+{\frac {1}{2}}(x-i{\sqrt {y^{2}+z^{2}}})^{9}+x_{0}$ and equivalently for the other coordinates.

## Spherical formula

A perfect spherical formula can be defined as a formula:

$(x,y,z)\rightarrow (f(x,y,z)+x_{0},g(x,y,z)+y_{0},h(x,y,z)+z_{0})$ where

$(x^{2}+y^{2}+z^{2})^{n}=f(x,y,z)^{2}+g(x,y,z)^{2}+h(x,y,z)^{2}$ where f,g and h are nth power rational trinomials and n is an integer. The cubic fractal above is an example.

## Uses in media

• In the Disney movie Big Hero 6, the emotional climax takes place in the middle of a wormhole, which is represented by the stylized interior of a Mandelbulb.