powered by CADENAS

Social Share

Ferrocerium (4956 views - Material Database)

Ferrocerium is a synthetic pyrophoric alloy that produces hot sparks that can reach temperatures of 3,000 °C (5,430 °F) when rapidly oxidized by the process of striking. This property allows it to have many commercial applications, such as the ignition source for lighters (where it is often known by the misleading name "flint"), strikers for gas welding and cutting torches, deoxidization in metallurgy, and ferrocerium rods (also called ferro rods, flint-and-steel, and flint-spark-lighters). Due to ferrocerium's ability to ignite in adverse conditions, rods of ferrocerium are commonly used as an emergency combustion device in survival kits. Ferrocerium was invented in 1903 by the Austrian chemist Carl Auer von Welsbach. It takes its name from its two primary components: iron (from Latin: ferrum), and the rare earth element cerium. The pyrophoric effect is dependent on the brittleness of the alloy and its low autoignition temperature.
Go to Article

Ferrocerium

Ferrocerium

Ferrocerium is a synthetic pyrophoric alloy that produces hot sparks that can reach temperatures of 3,000 °C (5,430 °F) when rapidly oxidized by the process of striking[clarification needed]. This property allows it to have many commercial applications, such as the ignition source for lighters (where it is often known by the misleading name "flint"), strikers for gas welding and cutting torches, deoxidization in metallurgy, and ferrocerium rods (also called ferro rods, flint-and-steel, and flint-spark-lighters). Due to ferrocerium's ability to ignite in adverse conditions, rods of ferrocerium are commonly used as an emergency combustion device in survival kits.[1]

Ferrocerium was invented in 1903 by the Austrian chemist Carl Auer von Welsbach. It takes its name from its two primary components: iron (from Latin: ferrum), and the rare earth element cerium.[2] The pyrophoric effect is dependent on the brittleness of the alloy and its low autoignition temperature.[3]

Use

While ferrocerium-and-steels function in a similar way to natural flint-and-steel in fire starting, ferrocerium takes on the role that steel played in traditional methods: when small shavings of it are removed quickly enough the heat generated by friction is enough to ignite those shavings, converting the metal to the oxide, i.e., the sparks are tiny pieces of burning metal. The sparking is due to cerium's low ignition temperature of between 150 and 180 °C (302 and 356 °F). About 700 tons were produced in 2000.

Comparison with natural flint

Ferrocerium bears no chemical relationship to the mineral flint. The similarity lies in the fact that both materials have historically been used to generate sparks. In traditional flint-and-steel fire-starting systems (using natural flint), an iron-bearing rock was used, which has a resemblance to ferrocerium, as it is iron in the tiny shards of rock produced in the striking process that burn.

Flint spark lighter

A flint spark lighter (sometimes just called a spark lighter, striker, or flint lighter) is a type of lighter used in many applications to safely light a gaseous fuel to start a flame. It is most commonly used for bunsen burners and oxyacetylene welding torches.

A flint spark lighter works by rapidly rubbing a small piece of ferrocerium upon the sharp edge of any substance that is harder than the rod, However carbon steel works better than most any other material in much the same way flint and steel are used. This manual rubbing action, done by squeezing the handle, creates a spark which then lights the gaseous fuel.

As tinder-igniting campfire starter rods it is sold under such trade names as Blastmatch, Fire Steel and Metal-Match for survivalists and bushcraft hobbyists. Some manufacturers and resellers incorrectly call them "magnesium" rods. However, some manufacturers combine a strip of ferrocerium along with a strip of magnesium in the same item, to be used by scraping off flakes of magnesium and then striking the ferrocerium with a knife. The sparks from the ferrocerium will ignite the magnesium, which will in turn ignite the tinder.

Composition

It is also known in Europe as Auermetall after its inventor Baron Carl Auer von Welsbach. Three different Auermetalls were developed: the first was iron and cerium, the second also included lanthanum to produce brighter sparks, and the third added other heavy metals. In the Baron von Welsbach's first alloy, 30% iron (ferrum) was added to purified cerium, hence the name "ferro-cerium".

A modern ferrocerium firesteel product is composed of an alloy of rare earth metals called mischmetal (containing approximately 20.8% iron, 41.8% cerium, about 4.4% each of praseodymium, neodymium, and magnesium, plus 24.2% lanthanum.[4] A variety of other components are added to modify the spark and processing characteristics.[1] Most contemporary flints are hardened with iron oxide and magnesium oxide.

Element Iron Cerium Neodymium Praseodymium Magnesium Lanthanum
Percentage 20.8% 41.8% 4.4% 4.4% 4.4% 24.2%

See also


AlGaAlnicoAluminiumAluminium alloyAluminium bronzeAluminium-lithium alloyArsenical bronzeArsenical copperBell metalBerylliumBeryllium copperBillon (alloy)BirmabrightBismanolBismuthBrassBronzeCalamine brassChinese silverChromiumChromium hydrideCobaltColored goldConstantanCopperCopper hydrideCopper–tungstenCorinthian bronzeCrown goldCunifeCupronickelCymbal alloysDevarda's alloyDuraluminDutch metalElectrumElinvarFernicoFerroalloyField's metalFlorentine bronzeGalfenolGalinstanGalliumGilding metalGlassGlucydurGoldGuanín (bronze)GunmetalHepatizonHiduminiumHydronaliumIndiumIronItalmaLeadMagnaliumMagnesiumManganinMegalliumMelchior (alloy)MercuryMolybdochalkosMuntz metalNichromeNickelNickel silverNordic GoldOrmoluPhosphor bronzePinchbeck (alloy)PlasticPlexiglasPlutoniumPotassiumRhoditeRhodiumRose's metalSamariumScandiumShakudōSilverSodiumSpeculum metalStainless steelSteelStelliteStructural steelTinTitaniumTombacTumbagaUraniumVitalliumWood's metalY alloyZincZirconiumFerrochromeFerromanganeseFerromolybdenumFerrosiliconFerrotitaniumFerrouraniumInvarCast ironIron–hydrogen alloyPig ironKanthal (alloy)KovarStaballoySpiegeleisenBulat steelCrucible steel41xx steelDamascus steelMangalloyHigh-speed steelMushet steelMaraging steelHigh-strength low-alloy steelReynolds 531Electrical steelSpring steelAL-6XNCelestriumAlloy 20Marine grade stainlessMartensitic stainless steelSanicro 28Surgical stainless steelZeron 100Silver steelTool steelWeathering steelWootz steelSolderTerneType metalElektron (alloy)Amalgam (chemistry)Magnox (alloy)AlumelBrightrayChromelHaynes InternationalInconelMonelNicrosilNisilNickel titaniumMu-metalPermalloySupermalloyNickel hydridePlutonium–gallium alloySodium-potassium alloyMischmetalLithiumTerfenol-DPseudo palladiumScandium hydrideSamarium–cobalt magnetArgentium sterling silverBritannia silverDoré bullionGoloidPlatinum sterlingShibuichiSterling silverTibetan silverTitanium Beta CTitanium alloyTitanium hydrideGum metalTitanium goldTitanium nitrideBabbitt (alloy)Britannia metalPewterQueen's metalWhite metalUranium hydrideZamakZirconium hydrideHydrogenHeliumBoronNitrogenOxygenFluorineMethaneMezzanineAtom

This article uses material from the Wikipedia article "Ferrocerium", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Material Database

database,rohs,reach,compliancy,directory,listing,information,substance,material