powered by CADENAS

Social Share

Amazon

Winkel (13960 views - Maschinenbau)

Ein Winkel ist in der Geometrie ein Teil der Ebene, der von zwei in der Ebene liegenden Strahlen (Halbgeraden) mit gemeinsamem Anfangspunkt begrenzt wird. Der gemeinsame Anfangspunkt der beiden Strahlen wird Scheitelpunkt des Winkels, Winkelscheitel oder kurz Scheitel genannt; die Strahlen heißen Schenkel des Winkels. Ein Winkel kann durch drei Punkte festgelegt werden, von denen einer den Scheitel des Winkels bildet und die beiden anderen auf je einem Schenkel des Winkels liegen. Die physikalische Größe, die die relative Lage der Strahlen zueinander beschreibt, wird als Winkelweite oder Winkelabstand (Winkeldistanz) bezeichnet, üblicherweise auch verkürzend als Winkel, wenn eine Unterscheidung von dem geometrischen Objekt nicht notwendig ist, beispielsweise in der Physik. Die Größe des Winkels wird mit einem Winkelmaß angegeben. Die Winkelweite kann auch als Maß einer ebenen Drehung definiert werden. Zur Unterscheidung vom Raumwinkel wird der hier definierte Winkel auch als ebener Winkel bezeichnet.
Go to Article

Explanation by Hotspot Model

Youtube


    

Winkel

Winkel

Ein Winkel ist in der Geometrie ein Teil der Ebene, der von zwei in der Ebene liegenden Strahlen (Halbgeraden) mit gemeinsamem Anfangspunkt begrenzt wird.

Der gemeinsame Anfangspunkt der beiden Strahlen wird Scheitelpunkt des Winkels, Winkelscheitel oder kurz Scheitel genannt; die Strahlen heißen Schenkel des Winkels. Ein Winkel kann durch drei Punkte festgelegt werden, von denen einer den Scheitel des Winkels bildet und die beiden anderen auf je einem Schenkel des Winkels liegen.

Die physikalische Größe, die die relative Lage der Strahlen zueinander beschreibt, wird als Winkelweite oder Winkelabstand (Winkeldistanz) bezeichnet, üblicherweise auch verkürzend als Winkel, wenn eine Unterscheidung von dem geometrischen Objekt nicht notwendig ist, beispielsweise in der Physik. Die Größe des Winkels wird mit einem Winkelmaß angegeben.

Die Winkelweite kann auch als Maß einer ebenen Drehung definiert werden.

Zur Unterscheidung vom Raumwinkel wird der hier definierte Winkel auch als ebener Winkel bezeichnet.

Definition

In der Geometrie sind zur Definition des Winkels als Objekt verschiedene Ansätze möglich. Dabei lassen sich zwei Typen unterscheiden:

  • Der ungerichtete Winkel, der durch eine vorzeichenlose Winkelweite gekennzeichnet ist.
  • Der gerichtete Winkel, der über eine Orientierung verfügt, und als Drehwinkel oder Winkelabstand gemessen wird.

Darstellung als Strahlenpaar

Die eingangs angeführte Definition zweier von einem Punkt ausgehenden Strahlen ist in die Anwendungen wie etwa die Koordinatensysteme und deren Achsen eingebunden.

Darstellung als Halbgeradenpaar

Der Winkel ist ein geometrisches Gebilde zweier Halbgeraden.

Sind , zwei Geraden, die sich in einem Punkt schneiden, so teilt der Punkt die Geraden , in Halbgeraden. Je eine Halbgerade von und (die Schenkel) zusammen mit (dem Scheitel) bilden einen Winkel.

Über die „ursprünglichen“ Geraden ermöglicht diese Darstellung etwa Betrachtungen über die verschiedenen Winkelpaare.

Darstellung als Teil der Ebene

Der Winkel (besser: das Winkelfeld) ist ein Teilbereich der Zeichenebene, der von zwei Halbstrahlen oder Halbgeraden begrenzt wird. Diese bilden den Rand, und der Rest des Winkelfeldes das Innere.

Diese Definition wird im Schulunterricht verwendet und betont das „Körperhafte“ des Gebildes und dient – über die Festlegung eines Innen- und Außenraums – der Einführung in die Dreiecksgeometrie: Das Dreieck lässt sich als Schnittmenge zweier Winkel mit einem gemeinsamen Schenkel definieren.

Ad hoc ist bei diesen drei Ansätzen der Winkel ein ungerichteter Winkel, erst eine zusätzliche Auszeichnung einer der beiden Halbstrahlen oder Halbgeraden als die „erste“ ermöglicht die Angabe eines gerichteten Winkels.

Darstellung als Drehung

Man kann auch sagen, dass ein Winkel durch eine Drehung eines Strahls oder einer Halbgeraden in einer Ebene um seinen bzw. ihren Anfangspunkt entsteht.

Da es zwei verschiedene Möglichkeiten gibt, den Strahl zu drehen, muss zusätzlich die Drehrichtung angegeben werden:

  • Linksdrehung: gegen den Uhrzeigersinn, auch mathematisch positiver Drehsinn genannt (Winkel ist positiv) – im Bild grün dargestellt.
  • Rechtsdrehung: mit dem Uhrzeigersinn, auch mathematisch negativer Drehsinn genannt (Winkel ist negativ) – im Bild violett dargestellt.

In der Mathematik ist es üblich, die Drehung gegen den Uhrzeigersinn – also im mathematisch positiven Drehsinn – auszuführen. Wenn die Drehung andersherum erfolgen soll, sollte dies ausdrücklich angegeben werden.

In der Geodäsie (Vermessungswesen) wird der Winkel im Uhrzeigersinn, also rechtsdrehend von 0 gon bis 400 gon gezählt. Da es in der Geodäsie per Definition keine negativen Winkel gibt, ist der Drehsinn positiv. Analog zur Uhr, auch hier wird von 0 bis 24 h positiv, rechtsdrehend gezählt. Alle geodätischen Messinstrumente werden zur Richtungs- oder Winkelmessung rechtsherum gedreht.

Bezeichnung von Winkeln

Die Angabe eines Winkels erfolgt nach DIN 1302 oder ISO 31-11, neuerdings auch nach ISO 80000-2.

  • Winkel werden meistens mit kleinen griechischen Buchstaben, z. B. oder , bezeichnet.
  • Ein Winkel ist ein Winkel zwischen zwei Halbstrahlen, Geraden, Kanten und ähnlichem. Er wird dann von ausgehend Richtung gezählt.
  • Alternativ kann man die drei Punkte angeben, die den Winkel definieren, wobei der Scheitelpunkt immer in der Mitte steht, z. B. Winkel ABC, oder veraltet . Dies bezeichnet den Winkel zwischen und , wobei im mathematisch positiven Drehsinn auf gedreht wird.
  • Im englischen Sprachraum ist auch nur die Angabe des Scheitels bzw. üblich.

Für den Formelsatz steht das Zeichen »∠« (HTML ∠/∠, TeX \angle, Unicode U+2220) zur Verfügung, für den gerichteten Winkel auch »∡« (TeX \measuredangle, U+2221 MEASURED ANGLE, keine HTML-Entity), die sich beide im Unicode-Block Mathematische Operatoren finden. Das liegende Winkelzeichen entspricht den angloamerikanischen Gewohnheiten, im europäischen Formelsatz ist ein Zeichen üblich, das dem amerikanischen »∢« U+2222 für den Raumwinkel zum Verwechseln ähnlich sieht. »∠« findet auch für Neigung und Winkligkeit (Lagetoleranz, DIN EN ISO 1101) Verwendung. Speziell für den rechten Winkel verwendet man »∟«, einen punktierten Winkel, in der Technik auch ein Quadrat, oder .

Winkelmaße und Maßeinheiten für Winkel

Ausführliche Informationen bietet der Hauptartikel Winkelmaß, Umrechnungen sind bei den einzelnen Maßen zu finden.

Winkelmaß Maßeinheit 1 Vollwinkel = Einheitenzeichen
 – Vollwinkel 1  
 Bogenmaß Radiant 2π rad
 Gradmaß Grad (Bogenminute, Bogensekunde) 360 ° ( ′ ″ )
 Geodätisches Winkelmaß Gon (veraltet: Neugrad) 400 gon (veraltet: g)
 Zeitmaß Stunden, Minuten, Sekunden 24 h m s
 – Nautischer Strich 32 ¯
 – Artilleristischer Strich (Schweiz: Artilleriepromille) 6400 mil ( A‰ )
 – Prozent, Promille nichtlinear %, ‰

Weitere Formen der Angabe eines Winkels:

Arten von Winkeln

Nullwinkel
spitzer Winkel
kleiner als Vollwinkel ( bzw. );
rechter Winkel
gleich Vollwinkel: ;
stumpfer Winkel
größer als Vollwinkel ( bzw. ) und kleiner als Vollwinkel ( bzw. );
gestreckter Winkel
gleich Vollwinkel: ;
überstumpfer (erhabener) Winkel
größer als Vollwinkel ( bzw. ) und kleiner als Vollwinkel ( bzw. );
voller Winkel, Vollwinkel (Vollkreis)
.

Zwischen zwei sich schneidenden Geraden gibt es vier Winkel. Jeweils zwei nebeneinander liegende summieren sich dabei zu . Der rechte Winkel hat die Besonderheit, dass diese beiden Winkel genau gleich sind. Jeweils zwei gegenüberliegende Winkel sind gleich. Der Vollwinkel hat die Besonderheit, dass zwei der Winkel null sind.

Zwei Geraden oder Strecken, die sich im rechten Winkel schneiden, nennt man zueinander orthogonal. In einer Zeichnung wird der rechte Winkel durch einen Viertelkreis mit Punkt oder durch ein Quadrat dargestellt.

Der Vollwinkel ist in Deutschland, Österreich und der Schweiz eine gesetzliche Einheit im Messwesen, er besitzt kein Einheitenzeichen.

Spezielle Winkelpaare

Die Geometrie kennt besondere Bezeichnungen für Paare von Winkeln, die zueinander in einer besonderen Beziehung stehen. Die für solche Winkel geltenden Gesetze helfen bei der Untersuchung komplexerer geometrischer Objekte.

Komplementwinkel oder Komplementärwinkel

Zwei Winkel heißen Komplementwinkel oder Komplementärwinkel, wenn sie sich zu einem rechten Winkel () ergänzen.

Supplementwinkel oder Ergänzungswinkel

Zwei Winkel heißen Supplementwinkel (auch: Supplementärwinkel), Supplement, Ergänzungswinkel oder kurz E-Winkel, wenn sie sich zu ergänzen.

Nebenwinkel

Schneiden sich zwei Geraden, so bezeichnet man ein Paar benachbarter Winkel als Nebenwinkel.

Nebenwinkel ergänzen sich zu .

Sie sind also Supplementwinkel.

Scheitelwinkel oder Gegenwinkel

Schneiden sich zwei Geraden, so bezeichnet man das Paar gegenüberliegender Winkel als Scheitelwinkel oder Gegenwinkel.

Scheitelwinkel sind immer gleich groß.

Die Bezeichnung Scheitelwinkel kommt daher, dass die beiden Winkel durch Punktspiegelung am Scheitelpunkt aufeinander abgebildet werden.

Stufenwinkel oder F-Winkel

Schneidet eine Gerade zwei Geraden und , so heißen die Winkel, die auf derselben Seite von und auf einander entsprechenden Seiten von bzw. liegen, Stufen- oder F-Winkel. Für den Fall, dass die Geraden und parallel sind, gilt:

Stufenwinkel an Parallelen sind gleich groß.

Aus der Winkelgleichheit kann umgekehrt auf die Parallelität von Geraden geschlossen werden: Wird ein Geradenpaar , von einer weiteren Geraden so geschnitten, dass die Schnittwinkel auf derselben Seite von und auf einander entsprechenden Seiten von und gleich groß sind, so sind die Geraden und parallel.

Wechselwinkel oder Z-Winkel[Bearbeiten | Quelltext bearbeiten]

Schneidet eine Gerade zwei Geraden und , so heißen die Winkel, die auf unterschiedlichen Seiten von und entgegengesetzten Seiten von bzw. liegen, Wechsel- oder Z-Winkel. Für den Fall, dass die Geraden und parallel sind, gilt:

Wechselwinkel an Parallelen sind gleich groß.

Aus der Winkelgleichheit kann umgekehrt auf die Parallelität von Geraden geschlossen werden: Wird ein Geradenpaar , von einer weiteren Geraden so geschnitten, dass die Schnittwinkel auf unterschiedlichen Seiten von und unterschiedlichen Seiten von bzw. gleich groß sind, so sind die Geraden und parallel.

Nachbarwinkel oder E-Winkel[Bearbeiten | Quelltext bearbeiten]

Schneidet eine Gerade zwei weitere parallele Geraden und , so bezeichnet man die Winkel, die auf derselben Seite von , aber auf unterschiedlichen Seiten von und liegen, als Nachbar- oder E-Winkel.

Nachbarwinkel ergänzen sich zu .

Aus der Ergänzung der Winkel zu kann umgekehrt auf die Parallelität von Geraden geschlossen werden: Wird ein Geradenpaar , von einer weiteren Geraden so geschnitten, dass sich die Schnittwinkel, die auf derselben Seite von , aber jeweils auf unterschiedlichen Seiten von und liegen, zu 180° ergänzen, so sind die Geraden und parallel.

Die Eigenschaft, dass sich Nachbarwinkel zu ergänzen, folgt direkt aus dem Parallelenaxiom der euklidischen Geometrie. Die oben genannten Eigenschaften von Stufen- und Wechselwinkeln lassen sich aus der Betrachtung von Neben- und Scheitelwinkeln von Nachbarwinkeln herleiten.

Winkel mit paarweise rechtwinkligen Schenkeln[Bearbeiten | Quelltext bearbeiten]

Zwei Winkel, deren Schenkel paarweise senkrecht aufeinander stehen, sind gleich groß oder ergänzen sich zu . Vergleiche nebenstehende Abbildungen.

Winkelkonstruktion[Bearbeiten | Quelltext bearbeiten]

Einige Winkel kann man allein mit Zirkel und Lineal konstruieren. Dazu gehören der 90 Grad-, 60 Grad-, 72 Grad- und 54 Grad-Winkel, sowie sämtliche Winkel, die durch Verdoppelung, Halbierung, Addition oder Subtraktion (siehe unten) dieser Winkel entstehen.

Die Winkel sind in Dezimalgrad als Näherungskonstruktion mithilfe des dritten Strahlensatzes in Kombination mit Zahlengeraden konstruierbar.

Konstruktion des 90-Grad-Winkels (rechten Winkels)[Bearbeiten | Quelltext bearbeiten]

Man konstruiert genauer gesagt die Senkrechte zu einer bereits gegebenen Strecke .

Konstruktion für vorgegebenen Schnittpunkt auf der Geraden[Bearbeiten | Quelltext bearbeiten]

  1. Zeichne einen Kreis um mit beliebigem Radius. Dieser Kreis schneidet in zwei Punkten.
  2. Zeichne um diese beiden Punkte jeweils einen Kreis. Die Radien der beiden Kreise müssen so gewählt sein, dass sich die Kreise in zwei Punkten schneiden.
  3. Verbinde die beiden Schnittpunkte dieser Kreise durch eine Gerade. Die so gezeichnete Gerade schneidet im rechten Winkel und zwar genau im Punkt .

Konstruktion für vorgegebenen Punkt außerhalb der Geraden (Fällen des Lotes)[Bearbeiten | Quelltext bearbeiten]

  1. Zeichne einen Kreis um mit einem Radius größer als der Abstand des Punkts von der Geraden. Dieser Kreis schneidet in zwei Punkten.
  2. Die weitere Vorgehensweise entspricht der Konstruktion für vorgegebenen Schnittpunkt.

Konstruktion (ohne vorgegebenen Schnittpunkt)[Bearbeiten | Quelltext bearbeiten]

Bei beliebigem Schnittpunkt entfällt die Festlegung symmetrischer Punkte auf der Geraden

  1. Wähle zwei Punkte und auf der Geraden, und zu diesen zwei Punkten zwei Kreisradien groß genug, dass die entsprechenden Kreise um und sich in zwei Punkten – im Weiteren und genannt – schneiden.
  2. Zeichne diese beiden Kreise (sie müssen nur soweit gezeichnet werden, dass die beiden Schnittpunkte erkennbar werden).
  3. Zeichne die durch die beiden Schnittpunkte und gehende Gerade. Diese Gerade ist senkrecht zu .

Hinweise[Bearbeiten | Quelltext bearbeiten]

Man muss die Kreise nicht vollständig zeichnen. Es reicht, wenn die Schnittpunkte erkennbar sind. Prinzipiell wird die Konstruktion umso genauer, je größer der Abstand der beiden Schnittpunkte voneinander ist. Denn mit größerem Abstand werden die Auswirkungen von solchen Fehlern kleiner, die dadurch entstehen, dass die neugezeichnete Gerade oder auch schon die gezeichneten Schnittpunkte nicht genau mit den idealen Schnittpunkten übereinstimmen. Andererseits wird die genaue Erkennbarkeit der Schnittpunkte geringer, je flacher sich die Kreise schneiden, was umso mehr der Fall ist, je weiter die Kreisradien von einem Idealradius entfernt sind, bei dem sich die Kreise senkrecht schneiden.

Streckenhalbierung, Mittelsenkrechte[Bearbeiten | Quelltext bearbeiten]

Man halbiert eine gegebene Strecke, indem man die Endpunkte und der Strecke als Mittelpunkte zweier gleicher Kreisbögen wählt und deren zwei gemeinsamen Kreuzungspunkte und miteinander verbindet. Der dadurch erzeugte Schnittpunkt liefert somit die gesuchte Mitte der Strecke .

Konstruktion eines 60-Grad-Winkels[Bearbeiten | Quelltext bearbeiten]

Antragen eines 60-Grad-Winkels an eine Gerade in einem gegebenen Scheitelpunkt[Bearbeiten | Quelltext bearbeiten]

  1. Ziehe einen Kreis auf der Geraden g1 um den gegebenen Punkt P (siehe unten). Es ergeben sich die zwei Schnittpunkte A und B.
  2. Ziehe einen Kreis mit gleichem Radius z. B. um den Schnittpunkt B (alternativ um A) und markiere die Kreuzung der beiden Kreise oberhalb der Geraden g1 als Schnittpunkt C.
  3. Zeichne eine Gerade g2 durch den Punkt P und den Schnittpunkt C. Somit schneidet die Gerade g2 im Scheitelpunkt P die Gerade g1 im Winkel von 60°.
Antragen eines 60-Grad-Winkels an eine Gerade in einem gegebenen Scheitelpunkt
Antragen eines 60°-Winkels durch einen Punkt außerhalb der Geraden.

Antragen eines 60-Grad-Winkels an eine Gerade durch einen Punkt außerhalb der Geraden[Bearbeiten | Quelltext bearbeiten]

  1. Fälle das Lot vom gegebenen Punkt P auf die Gerade (siehe oben). Du erhältst die Hilfspunkte A und B sowie den Gegenpunkt C. Der Schnittpunkt ist der Fußpunkt M.
  2. Ziehe einen Kreis (k1) um den Fußpunkt durch den gegebenen Punkt.
  3. Ziehe mit gleichem Radius einen Kreisbogen (k2) um den Gegenpunkt C. du bekommst die Punkte D und E, deren Verbindungsgerade die Mittelsenkrechte der Strecke CM ist.
  4. Zeichne das gleichseitige Dreieck PDE. Die an P anliegenden Seiten schneiden die Gerade auf gewünschte Weise.

Konstruktion eines 72- oder 54-Grad-Winkels[Bearbeiten | Quelltext bearbeiten]

Die etwas exotischere Konstruktion eines 72- oder 54-Grad-Winkels findet man im regelmäßiges Fünfeck.

Winkel 72°, 54° und 18° im Fünfeck, EF = EC, BH = CG

Addition und Subtraktion von Winkeln[Bearbeiten | Quelltext bearbeiten]

Jeder Winkel lässt sich zu einem anderen Winkel konstruktiv, sprich geometrisch, addieren und subtrahieren. Mit anderen Worten, möchte man z. B. (siehe drei Bilder) einen Winkel um die Größe eines anderen vermehren bzw. vermindern, so zeichnet man zunächst um die Scheitelpunkte der Winkel jeweils einen für beide Winkel gleich großen Kreisbogen, der beide Schenkel des jeweiligen Winkels schneidet oder berührt.

Winkel addieren

Zuerst wird der Kreisbogen des ersten Winkels über hinaus verlängert, damit darauf auch der zweite Winkel genügend Platz findet. Nun nimmt man die Winkelweite am Abstand in den Zirkel und überträgt sie damit, ab dem Schnittpunkt auf den verlängerten Kreisbogen. Es ergibt sich der Schnittpunkt Abschließend wird der neue Winkelschenkel eingezeichnet.

Der somit durch geometrische Addition erzeugte Summenwinkel hat die Winkelweite

Addition, Winkelweiten
Subtraktion, Winkelweiten
Winkel subtrahieren

Um den kleineren Winkel vom größeren Winkel zu subtrahieren, nimmt man die Winkelweite am Abstand in den Zirkel und überträgt sie damit, ab dem Schnittpunkt auf den Kreisbogen Es ergibt sich der Schnittpunkt Abschließend wird der neue Winkelschenkel eingezeichnet.

Der somit durch geometrische Subtraktion erzeugte Differenzwinkel hat die Winkelweite

Winkelteilungen[Bearbeiten | Quelltext bearbeiten]

Winkelhalbierung[Bearbeiten | Quelltext bearbeiten]

Ein Winkel besteht stets aus zwei Schenkeln, die sich im Scheitelpunkt treffen. Zieht man nun zwei gleich große Kreise auf je einem Schenkel durch den Scheitelpunkt, so bildet die Strecke zwischen den Kreisschnittpunkten die Winkelhalbierende. Jeder Punkt auf der Winkelhalbierenden ist gleich weit von den Schenkeln entfernt.

Konstruktion

Der zuerst gezeichnete Kreisbogen um den Scheitelpunkt mit einem beliebigen Radius, schneidet die Schenkel des Winkels in bzw. Nun wird, entweder mit der gleichen (siehe Bild) oder mit geänderter Zirkelöffnung, um die Schnittpunkte und jeweils ein gleich großer Kreisbogen geschlagen. Abschließend zieht man ab dem Scheitelpunkt durch den zuletzt entstandenen Schnittpunkt eine Halbgerade und erhält somit die Winkelhalbierende.

Dreiteilung[Bearbeiten | Quelltext bearbeiten]

Die allgemeine Dreiteilung des Winkels ist mit euklidischen Werkzeugen nicht möglich. Es gibt jedoch (Hand-) Zeichengeräte (z. B. Tomahawk) für diese Aufgabe. Was allerdings auch möglich ist, sind Näherungskonstruktionen mit geringen Winkelfehlern.

Beliebige Teilung[Bearbeiten | Quelltext bearbeiten]

Die beliebige Teilung erfordert ein Hilfsmittel mit dem ein Winkel proportional auf eine Strecke abgebildet werden kann und umgekehrt, beispielsweise eine Schablone, mit einer als Archimedische Spirale oder Quadratrix des Hippias geformten Kante. Damit lässt sich eine Winkelteilung in eine Streckenteilung überführen. Anwendungen davon gibt es in der Konstruktion bestimmter regelmäßiger Polygone, die allein mit Zirkel und Lineal nicht konstruierbar sind, wie z. B. des Elfecks.

Folgerung (allgemeine Winkelkonstruktionen)[Bearbeiten | Quelltext bearbeiten]

Konstruiert man die obigen Winkel (90°, 60°, 72° oder 54° oder deren Summen bzw. Differenzen), so lassen sich aus diesen per Winkelhalbierung weitere Winkel (45°, 30°, 36° und 27° oder den zugehörigen Summen bzw. Differenzen) konstruieren, die und deren Abkömmlinge sich wieder halbieren lassen. Den Winkel 3° erhält man z. B. durch folgende Vorgehensweise: 72°/2 → 36°/2 → 18° - 15° = 3°. Generell lassen sich alle Winkel konstruieren, deren Sinus (und damit auch deren Kosinus) durch einen mathematischen Ausdruck dargestellt werden kann, der nur aus ganzen Zahlen, Grundrechenarten und Quadratwurzeln besteht. Das gilt z. B. für ganzzahlige Winkel (Gradmaß), die ein Vielfaches von 3° sind[1]:

Die Winkelhalbierung kann durch Substitution der Halbwinkelformeln

und

ausgedrückt werden. Das Antragen eines Winkels an einen anderen kann durch Substitution der Additionstheoreme

und

ausgedrückt werden.

Darüber hinaus hat der Kosinus des Zentriwinkel des 17-Ecks noch den Wert:

, woraus sich seine Konstruierbarkeit ergibt.

Winkelmessung[Bearbeiten | Quelltext bearbeiten]

Bei der Winkelmessung wird mit Hilfe technischer Einrichtungen ermittelt, in welchem Winkel zwei Geraden oder zwei sonstige Richtungen zueinander stehen.

Quellen[Bearbeiten | Quelltext bearbeiten]

  1. Liste
 Wiktionary: Winkel – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Winkel – Sammlung von Bildern, Videos und Audiodateien


This article uses material from the Wikipedia article "Winkel", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Maschinenbau

AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD