Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Dieser Artikel stellt die Technik im Maschinenbau dar. Für das Fachgebiet der Hydrologie siehe Hydromechanik |
Hydraulik (griechisches substantiviertes Adjektiv υδραυλική [τέχνη] hydrauliké [téchne] „die hydraulische [Technik]“ von altgriechisch ὕδωρ hýdor „das Wasser“ und αὐλός aulós „das Rohr“) ist die Lehre vom Strömungsverhalten der Flüssigkeiten. In der Technik wird darunter die Verwendung von Flüssigkeit zur Signal-, Kraft- und Energieübertragung und zur Schmierstoffversorgung[1] verstanden.
Als Begründer der technischen Hydraulik gilt der Engländer Joseph Bramah. Im Jahr 1795 entwickelte er eine mit Druckwasser betriebene hydromechanische Maschine,[2] die nach dem hydrostatischen Gesetz von Blaise Pascal arbeitete und die eingebrachte Kraft 2034-fach vergrößerte. 1851 entwickelte William G. Armstrong den Gewichtsakkumulator, einen Speicher, mit dessen Hilfe große Volumenströme erzeugt werden konnten. Die London Hydraulic Power Company nahm 1882 eine zentrale Druckwasserversorgung für mehrere Hydraulikanlagen in Betrieb.
1905 gilt als der Beginn der Ölhydraulik, als Harvey D. Williams und Reynold Janney[2] erstmals Mineralöl als Übertragungsmedium für ein hydrostatisches Getriebe in Axialkolbenbauart[2] mit Taumelscheibe verwendeten, welches sie für Verschiebungen bei einem maximalen Druck von 40 bar einsetzten. Hele-Shaw entwickelte 1910 die erste brauchbare Radialkolbenmaschine.[2] 1929 erhielten die Ingenieure Hans Thoma und Heinrich Kosel ein Patent auf eine Axialkolbenmaschine in Schrägachsenbauart.[3] Die erste Servolenkung entwickelte Harry Vickers (um 1925), das erste vorgesteuerte Druckventil entwickelte er 1936[2]. Jean Mercier baute 1950 in größerem Umfang die ersten hydropneumatischen Druckspeicher.[2] Für die Entwicklung der Servo-Hydraulik waren Arbeiten von John F. Blackburn, Shih-Ying Lee und Jesse Lowen Shearer von Bedeutung, die 1958 in den USA erschienen sind.[2]
Hydraulik ist in der Technik eine Getriebeart – alternativ zu mechanischen, elektrischen und pneumatischen Getrieben. Sie dient zur Leistungs-, Energie- oder Kraft-/Momentenübertragung von der Arbeitsmaschine (Pumpe) zur Kraftmaschine (Kolben bzw. Hydraulikmotor), wobei die Leistungsparameter auf die Forderungen der Kraftmaschine angepasst werden. In der Hydraulik erfolgt die Leistungsübertragung durch die Hydraulikflüssigkeit, in der Regel spezielles Mineralöl, in zunehmendem Maß aber auch durch umweltverträgliche Flüssigkeiten, wie Wasser oder spezielle Ester oder Glykole. Die übertragene Leistung ergibt sich aus den Faktoren Druck und Fluidstrom. Zu unterscheiden sind:
Durch das Einleiten von unter Druck stehender Flüssigkeit im Zylinder werden die darin befindlichen Kolben und Kolbenstangen in lineare Bewegung versetzt, die für Arbeitsvorgänge und zum Antrieb von Maschinen ausgenutzt wird. Auch rotierende Antriebe können durch Flüssigkeitsdruck realisiert werden, etwa mit dem Hydraulikmotor.
Hydraulische Systeme ähneln prinzipiell den Antrieben der Pneumatik, bei der Druckluft zur Kraft- und zur Signalübertragung verwendet wird, haben aber davon abweichende Eigenschaften. So wird in der Ölhydraulik immer ein Kreislauf des Fluids benötigt (Hin- und Rücklauf), während in der Pneumatik die Abluft – meist über einen Schalldämpfer – in die Umgebung abgeblasen wird. Nur bei der Wasserhydraulik wird gelegentlich auf Kreisläufe verzichtet. Gegenüber der Pneumatik hat die Hydraulik den Vorteil, dass wesentlich höhere Kräfte übertragen werden können und sehr gleichförmige und exakte Fahrbewegungen möglich sind, da die Verdichtung der Hydraulik-Flüssigkeit so gering ist, dass sie bei technischen Anwendungen kaum beeinträchtigend wirkt.
Die Kombination von hydraulischen Elementen mit elektrischen Komponenten zur Steuerung wird als Elektrohydraulik bezeichnet.
Die weite Verbreitung in vielen Industriezweigen verdankt die Hydraulik folgenden Vorteilen:
Wegen ihrer spezifischen Vorteile werden Hydraulik-Antriebe häufig bei mobilen Arbeitsmaschinen wie Baumaschinen oder Landmaschinen verwendet. Dabei werden vor allem von Hydraulikzylindern mit linearer Bewegung Lasten gehoben oder gesenkt (Gabelstapler, Bagger, Aufzüge, Fahrzeugkrane etc.)
Fahrzeuge werden oft mit rotierenden hydraulischen Getrieben bzw. Flüssigkeitswandlern angetrieben, beispielsweise mit so genannten Schrägachsen- und Schrägscheibenmaschinen, mit denen hohe Leistungen übertragen werden können. Das Besondere daran ist, dass die Hydraulikgetriebe die Bewegung eines mit festgelegter Drehzahl arbeitenden Motors flexibel an die Betriebsbedingungen anpassen können, wie vor allem bei Diesellokomotiven.
Weitere typische Anwendungsbeispiele sind:
Durch die hydraulische Presse kann mit geringer körperlicher Kraft eine große Kraftwirkung erzielt werden. Durch manuelles Pumpen am Pumpkolben (2) eines Kfz-Wagenhebers kann am Presskolben (3) eine tonnenschwere Last gehoben werden.
Funktionsbeschreibung: Wird der Pumpkolben (2) nach unten gedrückt, schließt das Ventil (4) und das Ventil (5) öffnet, damit strömt Hydrauliköl in den Presszylinder. Der Presskolben (3) hebt sich. Wird der Pumpkolben nach oben bewegt, öffnet das Ventil (4) und das Ventil (5) schließt. Dadurch kann aus dem Vorratsbehälter (1) Hydrauliköl nachfließen. Wirkt auf den Pumpkolben mit einer Fläche von 0,5 cm² eine Kraft von 100 N (entspricht einer aufgelegten Masse von etwa 10 kg), ergibt das einen Druck von
Dieser statische Druck wirkt auch im Presszylinder. Hat der Presskolben eine Fläche von 40 cm² wirkt auf ihn eine Kraft von
womit man etwa 800 kg hochheben kann. Um den Presskolben gegen diese Last um einen Zentimeter nach oben zu drücken, muss ein Volumen von 40 cm³ bewegt werden. Dazu sind mehrere Pumphübe von zusammen 80 cm notwendig. Die hydraulische oder Druckenergie beträgt
Diese Energie ist gleich der Arbeit, die am Pumpkolben aufgewendet und vom Presskolben verrichtet wird:
Ein Schaltplan ist der Plan einer hydraulischen Anlage. Die Bauteile sind durch genormte Symbole dargestellt. Diese Pläne sind Teil der zu jeder Anlage erforderlichen Dokumentation, wichtig insbesondere zum Erstellen und Warten der Anlage. Die Liste der Schaltzeichen (Fluidtechnik) enthält eine umfangreiche Aufstellung von Symbolen für Hydraulik und Pneumatik, so Schaltzeichen für Speicher, Filter, Pumpen und Kompressoren, Zylinder und Ventile.
Schaltpläne können individuell, firmenspezifisch oder nach Normen (DIN ISO 1219) erstellt werden. Sie können Teile wie z. B. Arbeits- und Steuerschaltkreise, die Schritte des Arbeitsablaufs, die Bauteile der Schaltung mit ihrer Kennzeichnung sowie die Leitungen und Verbindungen darstellen. Die räumliche Anordnung der Bauteile wird in der Regel nicht berücksichtigt.
Ein Symbol zeigt ausschließlich die Funktion eines Bauteiles/Gerätes, es sagt nichts über den konstruktiven Aufbau und Einbaulage der Hydraulik-Komponenten aus. Symbole werden einfarbig dargestellt, und im Normalfall werden sie unbetätigt, stromlos bzw. in Ausgangsstellung dargestellt. Zur Modellierung können Beziehungen wie die Elektro-Hydraulische Analogie verwendet werden.
This article uses material from the Wikipedia article "Hydraulik", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD