Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution-Share Alike 4.0 (W.carter).
Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. |
Ein Kühlschrank (österreichisch gebräuchlich als Eiskasten) ist ein schrankförmiges Gerät, das üblicherweise elektrisch, einige auch mit Brennstoffen betrieben wird und die Temperatur in seinem Inneren selbständig niedrig hält. Mittels eines häufig an der Rückseite befindlichen und per Temperaturregler geregelten Kühlaggregates wird das Kühlschrankinnere gekühlt. Ebenso existieren Kühlschränke auf der Basis von Verdunstungskühlung oder durch Nutzung niedriger Außentemperaturen.
Kühlschränke finden Verwendung für die Lagerung von Nahrungsmitteln, Medikamenten, Chemikalien usw. Durch die niedrigere Temperatur laufen chemische Reaktionen und biologische Prozesse, die beispielsweise Lebensmittel ungenießbar und Medikamente unbrauchbar werden lassen, langsamer ab.
Die typische Betriebstemperatur im Innern von Haushaltskühlschränken liegt zwischen 2 °C und 8 °C. Das Gehäuse der Kühlfächer ist wärmegedämmt, um den Energieaufwand zur Erhaltung der Differenz zur Umgebungstemperatur niedrig zu halten. Kühlschränke gehören zu den meistverbreiteten und regelmäßig verwendeten Haushaltsgeräten und haben einen bedeutenden Anteil am Haushaltsstromverbrauch.
Kühlung wurde schon in der Antike erreicht, indem man Eis aus den Bergen in Orte transportierte und in tiefen Kellern (sog. Eiskellern) zur Lagerung von Lebensmitteln einsetzte.
1748 zeigte William Cullen die erste künstliche Kühlung an der Universität Glasgow. Der moderne Kühlschrank wurde ab 1834 kommerziell vermarktet, und zwar von Alexander Twinning; seine Kühlschränke kühlten durch Luftkompression. Eine wichtige Weiterentwicklung war der Einsatz von Ammoniak durch Ferdinand Carré 1859.[1]
Bis etwa 1950 wurden auch hölzerne Eisschränke, gespeist mit Eis aus Fabrik oder Teich (gelagert im Keller unter Sägespänen), verwendet. Sie enthalten innen ein Gefäß aus gelötetem Zinkblech. Oben wird Eis (zerkleinert oder am Stück, z. B. Eiszapfen) eingefüllt, unten das abtropfende Wasser gesammelt, in der Mitte ist eine dann von Eis umgebene Kammer ausgebildet, die das Kühlgut auf (Marmor-)Fächern aufnimmt und mit einer Tür verschlossen wird. In Graz erinnern die Adressen Eisteichgasse (-siedlung) nahe den ehemaligen Ziegel-Lehmgruben und Am Eisbach sowie der Ort Eisbach an diese Form der winterlichen Eisgewinnung. In Vallorbe wurde das Eis vom Lac de Joux für Paris auf die Eisenbahn verladen, Zell am See lieferte das Eis für deutsche Brauereien[2]
1876 entwickelte der deutsche Ingenieur und Unternehmer Carl von Linde das für die Wissenschaft und Technik fundamentale Linde-Verfahren. Seine Erfindung erlaubte es, die Zuverlässigkeit des Kompressors und der gesamten Kältemaschine so zu verbessern, dass diese industrietauglich wurde. Nun konnte man Wassereis ganzjährig industriell herstellen; man war nicht mehr auf Natureis angewiesen. Auch seine Erstentwicklung wurde damals noch mit Ammoniak betrieben. Diese Substanz ist ätzend und verursachte nicht nur Lecks, sondern auch einen üblen Geruch, so dass Kühlschränke erst in den 1920er Jahren seit der Entwicklung von Ersatzchemikalien für den Hausgebrauch geeignet waren. In den 1930er Jahren wurde er in den USA und Kuba zur Standardausstattung privater Haushalte; bereits 1937 hatte jeder zweite amerikanische Haushalt einen Kühlschrank.
Der erste europäische Kühlschrank wurde 1929 von den durch Jørgen Skafte Rasmussen gegründeten Zschopauer Motorenwerken J.S. Rasmussen entwickelt. Aus der Marke DKW-Kühlung ging 1931 die Deutsche Kühl- und Kraftmaschinen GmbH in Scharfenstein hervor.
Die ersten Kühlschränke wurden mit Methylchlorid, Ammoniak oder Schwefeldioxid betrieben; dies brachte Probleme für die Lagerung der beweglichen Teile im Kompressor und bei Undichtigkeiten den Austritt giftiger Gase oder Verpuffungen mit sich. Ab 1930 wurden Fluorchlorkohlenwasserstoffe (FCKW) technisch hergestellt und bald als Kältemittel in Kältemaschinen eingesetzt. Damit wurden die genannten Probleme vermieden. In den 1980er Jahren wurde das Ozonloch über der Antarktis entdeckt und gelang der wissenschaftliche Nachweis, dass die FCKWs die Ozonschicht abbauten. Im Montreal-Protokoll verpflichteten sich die Unterzeichner-Staaten, keine FCKW mehr zu verwenden.
Der erste FCKW-freie Kühlschrank der Welt in neuerer Zeit wurde 1992 durch das sächsische Unternehmen „dkk Scharfenstein“ (später unter dem Namen „Foron“) produziert. Angeregt wurde die Entwicklung von Greenpeace und dem Hygieneinstitut Dortmund unter der Leitung von Harry Rosin. Der erste FCKW-freie Kühlschrank dieser Art wurde durch die Lare GmbH als Laborgerät für das Hygieneinstitut Dortmund umgebaut. Die Hersteller von Kühlschränken hatten damals noch kein Interesse daran, diese Technik einzuführen. Seit dem Jahr 2000 sind Haushalts- und Gewerbekühlgeräte mit brennbaren Kältemitteln mehr und mehr auf dem Markt vertreten. Das System kühlt mit der sogenannten „Dortmunder Mischung“, einem Gemisch aus Propan und Butan, die weder das Ozonloch vergrößert noch den Treibhauseffekt verstärkt, dafür allerdings brennbar ist.
Mit der Verbreitung des elektrischen Stroms und des Kühlschranks verlor sein Vorläufer, der stromlose Eisschrank, an Attraktivität. Das Wort Eisschrank (in Österreich Eiskasten) wird bis in unsere Zeit umgangssprachlich für den heute gebräuchlichen Kühlschrank verwendet.
Bevor Kühlschränke für Privathaushalte allgemein erschwinglich waren, wurden vor allem in den 1950er und 1960er Jahren von Gefriergemeinschaften kleine Kühlhäuser betrieben, in denen hauptsächlich tiefgekühlte Lebensmittel gelagert wurden.
Bei allen Kühlschranktypen wird mittels Wärmeüberträgern dem Innenraum des Kühlschranks Wärme entzogen und an die Umgebung abgegeben (siehe Kältemaschine und Wärmepumpe). Je nach dem, wie dies erreicht wird, unterscheidet man drei Typen: Kompressorkühlschränke, Absorberkühlschränke und Kühlschränke mit Peltier-Element.
Auf diesem Prinzip basieren die in Haushalt und Industrie üblicherweise verwendeten Kühlanlagen: Beim Kompressorkühlschrank wird ein gasförmiges Kältemittel durch einen Kompressor adiabatisch verdichtet, wodurch sich das Kältemittel erwärmt. Im Verflüssiger, der aus schwarzen an der Rückseite des Geräts angebrachten Kühlschlangen besteht, wird die Wärme an die Umgebung abgegeben, wodurch das Medium kondensiert. Danach strömt es zur Druckabsenkung durch eine Drossel – z. B. ein Expansionsventil oder ein Kapillarrohr – und dann weiter in den Verdampfer im Inneren des Kühlschranks. Hier entnimmt das verdampfende Kältemittel aus den Kühlfächern die notwendige Verdampfungswärme (Siedekühlung) und strömt als Gas weiter zum außenliegenden Kompressor. Ein Kompressorkühlschrank entspricht in der Funktion einer Wärmepumpe, er unterscheidet sich lediglich in der Nutzung der Wärmeüberträger. Die Temperaturregelung erfolgt mit einem Thermostaten, der den Kompressor je nach gewünschter Temperatur ein- bzw. ausschaltet.
Der Absorberkühlschrank arbeitet mit einem Wasser-Ammoniak-Gemisch in einer Wasserstoffatmosphäre. Im Kocher werden Ammoniak und Wasser durch Wärmezufuhr (z. B. Gasflamme, elektrische Beheizung, Sonnenwärme) in gasförmiges Ammoniak und Wasser getrennt. Danach werden das flüssige Wasser und das gasförmige Ammoniak über verschiedene Rohrsysteme weitergeleitet. Das Ammoniak wird im Kondensator verflüssigt; hier gibt der Kühlschrank Wärme an die Umgebung ab. Im Verdampfer im Innenraum verdampft das flüssige Ammoniak wegen des geringen Partialdrucks, der Wasserstoff dient als Druckausgleich – an dieser Stelle kühlt der Kühlschrank. Anschließend wird das Ammoniak im Absorber mit dem abgekühlten Wasser aus dem Kocher in Lösung gebracht.
Eine ausführliche Funktionsbeschreibung findet sich im Artikel der Diffusionsabsorptionskältemaschine. Absorberkühlschränke werden z. B. in Kraftfahrzeugen oder im Campingbedarf eingesetzt. Sie haben, zumindest bei Elektrobetrieb, einen schlechteren Wirkungsgrad als Kompressorkühlschränke. Werden sie direkt mit Gas oder Motorabwärme betrieben, sind sie durch die direkte Nutzung von Primärenergie etwa gleich effizient wie Kompressorgeräte. Da sie außer der Arbeitsflüssigkeit keine bewegten Teile besitzen, sind sie praktisch lautlos; diese Eigenschaft verschafft ihnen ein breites Anwendungsgebiet z. B. als Minibar in Hotelzimmern. Für den Einsatz in besonders entlegenen Gebieten gibt es auch Absorberkühlschränke mit Petroleum- oder Benzinbetrieb.
Für kleine Absorberkühlschränke für Wohnmobile, Wohnwagen und für Hotelzimmer ist Electrolux praktisch alleiniger europäischer Marktführer (2008) (Produktname Electrolux RM nnn). Baugleiche Geräte werden auch unter dem Namen „Dometic“ verkauft.
Vorteile der Absorberkühlschränke
Nachteile des Absorber-Kühlsystems
Zur mobilen Anwendung werden seit Jahren verbreitet Kühlboxen nach dem thermoelektrischen Prinzip (Peltier-Effekt) angeboten. Sie arbeiten direkt mit 12 V Gleichspannung und sind daher ideal für den Einsatz im Auto. Außerdem arbeiten sie prinzipiell völlig geräuschlos, werden aber in der Regel durch Lüfter unterstützt, die einen gewissen Geräuschpegel erzeugen. Die Vorteile werden jedoch durch einen sehr niedrigen Wirkungsgrad erkauft: Während ein Kompressorkühlschrank zur Übertragung von 1 Watt „Kühlleistung“ ungefähr 0,5 Watt verbraucht, benötigt ein Peltierelement für den gleichen Energietransport über 2 Watt. Ein Einsatz dieser Geräte im Haushalt ist daher energietechnisch nicht sinnvoll.
Ein typischer Tischkühlschrank (Standmodell) hat ca. 150 Liter Inhalt und wiegt ca. 40 kg. Eine Kühl-Gefrier-Kombination hat ca. 250 Liter Inhalt und wiegt etwa 65 kg.
Es existieren verschiedene Raumaufteilungen für Kühlschränke. Am bekanntesten und am gebräuchlichsten ist dabei die Variante mit einer großen Außentür und einer inneren Klappe zum Gefrierabteil im oberen Bereich. Das Gefrierabteil besitzt meist ein Fassungsvermögen von maximal 20 Litern, das Kühlabteil kann Größen bis zu 250 Litern (evtl. größer) annehmen.
Andere Varianten verfügen über getrennte Türen für Kühl- und Gefrierfach. Sie werden als Kühl-Gefrier-Kombination bezeichnet. Die Abteile können übereinander oder auch nebeneinander liegen; letztere Version ist vor allem in den USA sehr populär und verfügt meist über einen integrierten Eiswürfelbereiter und optional über eine zusätzliche Getränkeklappe in der großen Tür des Kühlsegments. Ein solcher „Side-by-side“-Kühlschrank – auch amerikanischer Kühlschrank genannt – kann mehr als 500 Liter (Kühlteil etwa 350 Liter, Gefrierteil etwa 150 Liter) aufnehmen.
Größere Varianten verfügen beispielsweise über eine Doppeltür zum obenliegenden Kühlbereich und unten über eine sehr breite Schublade für das Gefriersegment. Diese Varianten werden französischer Kühlschrank genannt.
In einem modernen Haushalts-Kühlschrank herrschen verschiedene Temperaturzonen:
Bei Kühlschränken mit Eisfach, besonders mit Tiefkühlfächern, ist die vom Hersteller angegebene Umgebungstemperatur des Aufstellorts, angegeben als Klimaklasse, zu berücksichtigen:
Während eine geringe Umgebungstemperatur des Aufstellungsortes zunächst hilft, Energie zu sparen, führt – scheinbar paradoxerweise – das Unterschreiten der Mindesttemperatur zu einem Auftauen im Eis-/Tiefkühlfach. Das hängt damit zusammen, dass der Kühlraum und die Tiefkühlfächer meist einen gemeinsamen Kompressor haben, der über einen Thermostaten im Kühlraum geregelt wird. Bei einer geringen Außentemperatur, z. B. 8 °C, muss der Kompressor nur selten laufen, um z. B. eine Temperatur von 6 °C im Kühlraum zu gewährleisten. Diese Aktivität des Kompressors reicht nicht aus, um gegen den deutlich größeren Unterschied (Wärmestrom) zwischen Außentemperatur und Temperatur im Tiefkühlfach, z. B. −18 °C, zu arbeiten. Davon abgesehen können unterhalb der Mindestbetriebstemperatur Schmiermittel im Kompressor zu zähflüssig werden.
Kühlschränke der Klimaklasse SN haben daher häufig eine Heizung in Nähe des Thermostaten im Kühlraum von ca. 8 Watt. Manchmal wird einfach die Glühlampe (üblich: 15 Watt) nicht ausgeschaltet, um die Betriebstemperatur von der Klimaklasse N auf SN zu erweitern.
Wer Energie sparen und ein Kühlgerät in einem ungeheizten Raum aufstellen möchte, bei dem auch dauerhafte Temperaturen unter 10 °C zu erwarten sind, entscheidet sich besser gegen eine Kühl-/Gefrierkombination und für einen getrennten Kühl- und Tiefkühlschrank bzw. noch besser für eine Tiefkühltruhe. In letzter Zeit setzen sich in privaten Haushalten auch immer mehr kleine Kühl- und Tiefkühlzellen durch. Für gewerbliche Nutzer gibt es noch einige andere Kühlgeräte wie z. B. Wandkühlregale (zur Präsentation von hauptsächlich verpackten Lebensmitteln), Freikühltresen, Bierkühlungen usw.
Manche Lebensmittelläden bieten Getränke – auch in Kisten – kühl temperiert in ganz normalen Regalen an, indem ein kleiner Bereich geringerer Raumhöhe als Kühlraum ausgebildet ist, der nur durch einen etwa 1 m breiten ziemlich luftstromdichten, transparenten Folienstreifenvorhang zu betreten ist.
Der Energiebedarf wird in Mitteleuropa für Umgebungstemperaturen zwischen +16 °C bis +32 °C definiert und als Klimaklasse N klassifiziert. Die Energieverbrauchskennzeichnung (umgangssprachlich Energielabel) aus dem Jahre 1998 dient zur Unterstützung der Kaufentscheidung. Für das Etikett hat die EU-Kommission[3] ein einheitliches, verbindliches Muster festgelegt. Die Energieeffizienzklassen [4] reichen hierbei von G bis A und spiegeln den jeweiligen Stand der Technik zu der Zeit wider. Für besonders stromsparende Kühl- und Gefriergeräte wurden 2003 die Erweiterungen A+ und A++ eingeführt, die jeweils noch besser als die Energieeffizienzklasse A sind und für einen sehr niedrigen Energieverbrauch stehen.
Das europäische Parlament verabschiedete mit der Richtlinie 2010/30/EU im Mai 2010 eine ab 2011 geltende Neuregelung der Energieeffizienzklassen für Haushaltsgeräte. Zusätzlich zu Klassen A+ und A++ wurde die Klasse A+++ eingeführt und auf dem Energielabel dargestellt. Die neue A+ darf 5 % mehr Energie verbrauchen als die alte A+ Klasse und die neue A++ darf 10 % mehr brauchen.
Alte Richtlinie für Haushaltsgeräte: 92/75/EWG für Kühlschränke: Richtlinie 94/2/EG [5] Änderung: Richtlinie 2003/66/EG [6]
Neue Richtlinie für Haushaltsgeräte: 2010/30/EU für Kühlschränke: Verordnung (EU) Nr. 1060/2010 [7]
In der neuen Richtlinie ist festgelegt, dass seit Juli 2011 keine schlechteren Haushaltsgeräte mit Kompressoren als Klasse A mehr auf den Markt gebracht werden dürfen (z. B. Absorbergeräte dürfen nach wie vor deutlich schlechter sein).
1983 baute das Rocky Mountain Institute (RMI) einen Sun-Frost-Kühlschrank mit nur 0,19 kWh/l pro Jahr (22 W/m³), dessen Wärmeüberträger außen am Gebäude angebracht war und die Hälfte der benötigten Kühlenergie passiv erzeugt wurde. Das RMI hielt eine Entwicklung von Geräten mit noch geringeren Verbrauchswerten, z. B. durch Vakuumisolationsschichten, für möglich. Die sparsamsten Kühl-/Gefrierkombinationen erreichen Verbrauchswerte von 0,48 kWh/l pro Jahr (55 W/m³, bei 25 °C Umgebungstemperatur) wie der Blomberg CT 1300A (nicht mehr im Handel) oder 0,34 kWh/l pro Jahr (39 W/m³, bei 21 °C) der Sun Frost RF16. Ein vergleichbares Gerät der Energieeffizienzklasse A benötigt 1,26 kWh/l pro Jahr (144 W/m³, Stand 2006). Deutlich sparsamer sind reine Kühlgeräte ohne Gefrierfach. Diese sind dann zu empfehlen, wenn ohnehin eine separate Gefriertruhe vorhanden ist.
Die Wartung durch das Abtauen von Kühlschränken ist eine Maßnahme, um Energieverschwendung zu verhindern. Beim Öffnen der Kühlschranktür gelangt warme Luft in das Kühlschrankinnere. Wird die Tür geschlossen, senkt der Kühlschrank die Innentemperatur wieder ab. Da kältere Luft und insbesondere die Verdampferflächen, die Kondensationsrate des in der Luft befindlichen Wasserdampfs steigern und gleichzeitig die Verdampfungsrate verringern, verringert sich der Sättigungsdampfdruck. Der durch das Öffnen mit der Umgebungsluft in den Kühlschrank eingebrachte Wasserdampf kondensiert auf den Flächen und gefriert. Die Vereisung der Kühlflächen verringert die Kühlleistung, da die Eisschicht isolierend wirkt. Dies führt dazu, dass der Kühlschrank für dieselbe Leistung mehr Energie (Strom) aufwenden muss.[8] Um den Energieverbrauch wieder zu senken, müssen die Eisschichten von Zeit zu Zeit entfernt werden. Dies kann entweder manuell oder mit unterschiedlichen Techniken automatisch erfolgen. Bei den automatischen Abtauverfahren wird unterschieden zwischen einer Kühlraumtemperatur über 0 °C, die das Abtauen bei Solltemperatur erlaubt, typischerweise Kühlschränke und einer Kühlraumtemperatur deutlich unter 0 °C, wie sie bei Gefrierschränken verwendet wird.
Bis zur Entwicklung automatischer Abtauverfahren mussten sowohl Kühlschränke als auch Gefrierschränke manuell abgetaut werden. Bei vielen Gefrierschränken oder Kühl-/Gefrierkombinationen ohne No-Frost-Technik ist dies für das Gefrierteil nach wie vor notwendig. Um einen Kühlraum abzutauen, muss das Kühlgut zunächst in einem anderen Kühlraum oder gut isoliert provisorisch zwischengelagert werden. Anschließend kann das Kühlaggregat ausgeschaltet und die Tür geöffnet werden, wodurch das Eis zu tauen beginnt. Der Prozess kann beschleunigt werden, indem vor der Tür ein Ventilator oder Heizlüfter Warmluft in den Kühlraum bläst. Alternativ kann ein Topf mit heissem Wasser in das Gefrierteil gestellt werden. Bei geschlossener Tür beschleunigt sich das Abtauen um ein vielfaches. Anfallendes Tauwasser sammelt sich in einer speziellen Schale oder im unteren Kühlraumbereich.
Bei Modellen ab der mittleren Preisklasse ist die Abtauautomatik für den Kühlteil seit den 1980er Jahren Standard, während sie im Gefrierteil nur bei Modellen in Gastronomiequalität üblich ist. Kühlschränke früherer Baujahre müssen manuell abgetaut werden, indem man sie einige Stunden ausschaltet und den Eispanzer, der sich an der Innenrückwand aus gefrorenem Kondenswasser gebildet hat, durch Verflüssigung in einen Extrabehälter ablaufen lässt oder manuell entfernt. Eine Technik, dieses Problem zu vermeiden, besteht darin, mit einem Umluftsystem im Inneren des Kühlschranks dafür zu sorgen, dass die Luft einem Verdampfer – außerhalb des eigentlichen Kühlraums – zugeführt wird, an dem sich dann Eis bildet. Dieser Verdampfer wiederum taut sich regelmäßig selbständig ab, und die entstehende Flüssigkeit wird außerhalb des Gerätes in einer Schale aufgefangen und kann dort, unterstützt durch die Kompressorabwärme, verdunsten. Dadurch ist die Luft im Kühlschrank trocken, und es kann sich kaum Eis bilden.
Eine andere Technik, die z. B. im Kühlabteil des Kühl-/Gefrierschranks BBC-Duplo aus den 1970er Jahren eingesetzt wurde, besteht darin, dass an der Rückseite des im oberen hinteren Bereich des Kühlraums senkrecht angebrachten plattenförmigen Verdampfers eine Heizplatte angebracht ist (beim genannten Gerät 20 Watt), die jeweils automatisch eingeschaltet wird, wenn der Kompressor durch den Thermostaten zum Stillstand gebracht wird und bei dessen Wiederanlauf sich dann gleichzeitig ausschaltet. Das allenfalls vorhandene Abtauwasser wird in einem flachen, in der inneren Rückwand integrierten darunterliegenden Trichter gesammelt, der den Ausgang an der Rückseite des Kühlschranks hat. Dort wird das Wasser mittels eines Schlauchs nach unten zu einem offenen Behälter geleitet. Dieser wird durch die Kältemittelleitung unmittelbar am Ausgang des Kompressors – wo diese verhältnismäßig hohe Temperaturen erreicht – beheizt, womit das Abtauwasser leichter in die Umgebung verdunsten kann; dadurch trägt es auch zum Kühlen des komprimierten Kühlmediums im Kondensator bei; ein Teil der in der Abtau-Heizplatte verbrauchten Energie wird hier zurückgewonnen.
Seit etwa 1995 ist häufig die Kühlfläche für das Kühlabteil in die Innen-Rückwand integriert, da wegen der Einführung des brennbaren Kältemittels R600a der Verdampfer aus Sicherheitsgründen besser geschützt sein muss. Nach der Kühlphase wird solange gewartet, bis die Fläche 5 °C hat, damit der dort gebildete Reifbelag abtaut. Das Wasser rinnt herunter bis zu einer trichterförmigen Rinne und durch eine 10 mm große Öffnung nach außen in eine Tasse über dem Kompressor, dessen Abwärme das Kondenswasser verdunsten lässt. Im Betrieb ist zu beachten, dass nichts vom Kühlgut an der Rückwand steht, da das Kondenswasser sonst in den Kühlraum rinnt. Das Abflussloch ist frei von Verstopfung zu halten. Manche sind mit Staubkappen abzudecken, die mit einem federnden Fortsatz in die Abflussöffnung gesteckt werden. Zum einmal jährlich empfohlenen Freistechen des Abflusses eignet sich beispielsweise ein Strohhalm. Bei diesen Gerätetypen muss nur ein eventuell vorhandenes Gefrierabteil eigens abgetaut werden.
Um eine Abtauautomatik auch bei Kühlraumtemperaturen unter dem Gefrierpunkt umzusetzen, ist es erforderlich, den eigentlichen Kühlraum von dem Raum, in dem die Luft auf die Solltemperatur gekühlt wird, zu trennen. Während der Kühlphase bläst ein Ventilator die kalte Luft in den Gefrierraum. Die Geräte sind dabei so ausgelegt, dass Luft durch alle Fächer zirkuliert und als Kreislauf wieder in das Kühlteil eintritt. Da die Kondensationsrate des in der Luft enthaltenen Wasserdampfs an den Kühllamellen besonders hoch ist, schlägt sich diese als Reif hauptsächlich dort nieder. In festgelegten Zeitintervallen taut eine Heizung die Kühllamellen ab, und die Eisschicht tritt über eine Rinne als Wasser aus dem Gerät heraus und landet in einem Verdunstungsbehälter. Da der Ventilator in der Abtauphase nicht läuft, bleibt der Gefrierraum weiterhin gekühlt. Durch diese Technik wird nicht nur verhindert, dass die Kühlrippen vereisen, sondern es sinkt die Luftfeuchtigkeit im gesamten Gerät, und es bilden sich nahezu keine Eisschichten mehr.
Ein anfänglicher Nachteil dieser als No-Frost bezeichneten Technik ist ein höherer Energieverbrauch. Dies relativiert sich jedoch, da eine Energieverschwendung durch Eisbildung und die Abtauvorgänge vermieden werden.[9] Dieser Tatsache wird Rechnung getragen, indem bei No-Frost-Geräten bei gleicher Energieeffizienzklasse ein 20-prozentiger Mehrverbrauch erlaubt ist.[10] Durch Effizienzsteigerung konnte der Mehrverbrauch durch die No-Frost-Technik bei aktuellen Geräten deutlich reduziert werden.[11]
Kennzeichnung | Temperatur | Nutzungs- und Leistungsvorgabe |
< 0 °C | nicht geeignet zur Lagerung von gefrorenen Lebensmitteln (Hauptsächlich für Eiswürfel) | |
* | ≤ −6 °C | geeignet zur kurzzeitigen Lagerung von gefrorenen Lebensmitteln (ca. 1 Woche) |
** | ≤ −12 °C | geeignet zur Lagerung von gefrorenen Lebensmitteln bis ca. 2 Wochen |
*** | ≤ −18 °C | geeignet zur Langzeitlagerung von gefrorenen Lebensmitteln |
**** | ≤ −18 °C | geeignet zur Langzeitlagerung von gefrorenen Lebensmitteln, geeignet zum Einfrieren, ohne dass bereits eingelagertes Gefriergut auftaut |
Quelle[12]
Gefrierschränke und -truhen funktionieren nach demselben Prinzip wie ein Kühlschrank, kühlen jedoch mit einer Innentemperatur von −18 °C und kälter, wodurch die langfristige Lagerung von gefrorenen Lebensmitteln möglich ist. Mit 4-Sterne-Gefrierschränken können Lebensmittel zudem eingefroren werden. Viele Geräte besitzen zudem einen Schalter zum Schnellgefrieren (der sich entweder selbsttätig zurückstellt oder zurückgestellt werden muss), der den Kompressor dauerhaft einschaltet. Auf diese Weise wird das Gefriergut weit unter -18 °C gekühlt, so dass größere Mengen eingefroren werden können, ohne dass bereits eingelagertes Gefriergut antaut. Vielfach sind die Geräte auch mit einem separaten Schnellgefrierfach ausgestattet (es befindet sich meist oben und ist mit einer separaten Klappe versehen, während die anderen Gefrierfächer wie eine Schublade funktionieren).
Gefriertruhen eignen sich zur Aufbewahrung von Gefriergut in größeren Stücken (z. B. unzerteiltes Fleisch). Durch ihre Form (kalte Luft sinkt nach unten, daher entweicht beim Öffnen des Deckels weniger Kälte als beim Öffnen der Tür eines Gefrierschranks) ist ihr Energieverbrauch geringer, vor allem dort, wo der Deckel häufig geöffnet wird, etwa in Supermärkten, macht sich dies positiv bemerkbar. Im Haushalt ist es aber ein Nachteil, dass der Inhalt übereinander liegt und daher nicht so übersichtlich angeordnet ist wie in einem Gefrierschrank. Beim Abtauen oder der Reinigung sammelt sich zudem das anfallende Wasser auf dem Boden der Kühltruhe und lässt sich daher nicht so leicht entfernen. Manche Kühltruhen besitzen daher einen normalerweise mit einem Stopfen verschlossenen Ablauf oder eine herausnehmbare Schale zum Auffangen des Wassers.
In Supermärkten werden spezielle offene Kühlgeräte verwendet, um Lebensmittel, die einer dauerhaften Kühlung bedürfen, für Kunden leicht zugänglich aufzubewahren. Da hier, anders als bei geschlossenen Kühlgeräten, ein ständiger Austausch mit der wärmeren Umgebungsluft stattfindet, ist der Energieverbrauch deutlich höher.
Tiefkühltruhen mit Zugang von oben wurden in der Vergangenheit über Nacht mit einfachen Plastikdeckeln abgedeckt, seit etwa dem Jahre 2005 sind Schiebedeckel aus Isolierglas (Zweischeiben, metallbedampft) üblich.
Tiefkühlvitrinen mit Zugriff von vorne (erhöhen den Warenumsatz pro Fläche) haben selbstschließende Isolierglastüren mit Offenhalter und Scheibenheizung gegen Kondenswasser. Hinweisschilder wie „Auswählen – dann erst öffnen“ sollen die Erwärmung gering halten.
An der Vorderseite von Kühlregalen ohne Türen fließt ständig ein kalter Luftstrom nach unten, der dort aufgefangen, gekühlt und oben schleichend wieder ausgeblasen wird. Nachts werden sie mit aluminisierten Vorhängen aus Schaumkunststoff verschlossen.
Während früher die Abwärme dieser Kältemaschinen an jedem Kühlgerät in den Geschäftsraum abgegeben wurde, wird die Abwärme in neueren Geschäftslokalen per isoliertem Kältemittelrohrkreis in eine Energiezentrale geleitet, die der Klimatisierung (Heizung, Kühlung, Lüftung) der Räume und der Warmwasserbereitung dient.
Im Haushalt eingesetzte Kühlschränke arbeiten nach dem Kompressor-Prinzip. Die dort als Kältemittel lange Zeit verwendeten FCKW-haltigen Kältemittel sind ökologisch sehr bedenklich, da sie stark ozonabbauend wirken. Darüber hinaus wurden die in der Isolierung verwendeten Schaumstoffe ebenfalls mit FCKW aufgeblasen. Da die FCKW jedoch erst bei Verschrottung des Kühlschranks frei werden, sollten die betreffenden Kühlschränke nicht aus diesem Grund vorzeitig ersetzt werden. Beim Schäumungsmittel ist man in den 1990er Jahren z. B. auf n-Pentan umgestiegen. In neueren Kühlgeräten werden seit Mitte der 1990er Jahre vorwiegend andere Kältemittel wie beispielsweise Isobutan oder R134a eingesetzt. Das Wiederauffüllen von Kühlschränken oder Klimaanlagen mit ursprünglich FCKW-haltigen Kältemitteln ist verboten bzw. nur noch mit passenden FCKW-freien Ersatzkältemitteln zulässig. Ältere, schon installierte industrielle Kühlanlagen sind von dieser Regelung ausgenommen.
Die Energieeffizienz des Kühlschranks hängt im Wesentlichen von der Differenz zwischen Umgebungstemperatur und Kühlraumtemperatur ab. Je höher die Umgebungstemperatur (z. B. im Sommer), bzw. je kälter die am Kühlschrank eingestellte Temperatur desto höher der Stromverbrauch.
Nach einer Untersuchung von Jean-Pierre Hugot vom Pariser Hôpital Robert Debré könnte es sein, dass die klimatischen Verhältnisse innerhalb eines Kühlschranks die Verbreitung bestimmter kälteliebender Mikroben wie Yersinien und Listerien begünstigen. Diese Mikroorganismen sind möglicherweise Verursacher des Morbus Crohn (Krankheit des Verdauungssystems).[13] Der Verzehr verdorbener Speisen wegen Verzicht auf die Kühlung dürfte allerdings mit größeren Krankheitsrisiken behaftet sein.
Dem Bundesinstitut für Risikobewertung zufolge sind die von vielen Herstellern verwendeten antibakteriellen Silberbeschichtungen in Kühlschränken überflüssig.[14] Eine mögliche Folge der Verwendung antibakterieller Silberbeschichtungen ist die Übertragung von Silberteilchen in Nahrungsmittel. Silber hemmt das Bakterienwachstum, ist jedoch für den menschlichen Organismus weitgehend unbedenklich, daher (neben Gold und Aluminium) auch als Lebensmittelfarbe zugelassen.
Bauteile wie beispielsweise der Kompressor, die Anlassvorrichtung des Kompressors und der Thermostat sind höheren Beanspruchungen ausgesetzt. Während der Austausch eines Thermostaten von fast jedem Elektrobetrieb durchgeführt werden kann, muss man sich bei einem beschädigten Kompressor in der Regel an den Reparaturdienst des Geräteherstellers oder aber an einen Fachbetrieb für Kältetechnik wenden. Der Austausch eines Kompressors kann so teuer sein, dass ein Wechsel des gesamten Kühlgerätes wirtschaftlicher sein dürfte, da nicht nur der Kompressor, sondern auch die gesamte Kältemittelfüllung ersetzt werden muss. Die Anlassvorrichtung ist hohen Strömen und hohen Temperaturunterschieden ausgesetzt. Bei kunden- und umweltfreundlich konstruierten Kühlgeräten kann sie getrennt vom Kompressor ausgetauscht werden.
Wurde eine Kühlfläche aus Aluminium, meist hergestellt durch Roll-bonding und Aufblasen – etwa durch ungeeignetes Nachhelfen beim Abtauen durch Kratzen oder Stoßen – perforiert, lohnt sich eine Reparatur kaum. Es gibt zwar ein Klebeverfahren, es ist jedoch aufwändig, und der Kältekreislauf muss zusätzlich in einer Fachwerkstatt auf Dichtheit geprüft und wiederbefüllt werden. Die zu klebende Stelle ist nur von außen zugänglich, während der Druck von innen wirkt. Eine Klebung wird durch Feuchtigkeit und häufige starke Temperaturwechsel hoch beansprucht. Einfacher zu reparieren erscheint der Bruch eines Rohrs zum Verdampfer hinten. Kupferrohr kann gut gelötet werden.
Wird ein Kompressorkühlschrank ausgeschaltet, kann der Kompressor gegen den noch im Verflüssiger vorhandenen Druck nicht sofort wieder anlaufen. Erst nach einiger Zeit (ein bis zwei Minuten) gleicht sich der Druck durch die Drossel und den Kondensator aus, und der Anlauf ist wieder möglich. Die im Kühlschrank eingebaute Regelung beachtet diese Wartezeit automatisch. Wird jedoch im laufenden Betrieb der Stecker gezogen, so sollte er erst nach einigen Minuten wieder eingesteckt werden, um den Kompressorantrieb nicht unnötig zu überlasten. Wird der Stecker dennoch sofort wieder eingesteckt, wird nach erfolglosen Startversuchen durch einen (selbstrückstellenden) Motorschutzschalter eine Wartezeit verursacht.
Wurde ein für stehenden Betrieb ausgelegter Kompressorkühlschrank längere Zeit liegend transportiert, so kann sich Schmiermittel aus dem Kompressor in den Kühlkreislauf verlagert haben. In diesem Fall sollte der Kühlschrank erst ca. zwölf Stunden in seiner normalen Lage stehen, bevor er wieder in Betrieb genommen wird. Dadurch wird dem Schmiermittel genügend Zeit gegeben, in den Kompressor zurückzufließen.
Wird ein gebrauchter Kühlschrank vorübergehend außer Betrieb gesetzt, sollte zur Vermeidung von Schimmelpilzbildung die Kühlschranktür geöffnet bleiben.
Durch das enthaltene Kältemittel fallen Kühlmaschinen (incl. Kühlaggregat) unter die UN-Nummer 3358. Die Sondervorschrift 291 befreit jedoch vom ADR, solange weniger als 12 kg Gas enthalten ist. Wenn ein nicht entzündbares Gas enthalten ist, gilt UN-Nummer 2857. Auch hier gibt es eine Sondervorschrift 119, die bis 12 l bzw. kg Gasinhalt in diesen Kältemaschinen die Anwendung des ADR nicht erforderlich macht. Im Haushaltskühlschrank ist die Füllmenge an brennbaren Kältemittel auf maximal 0,15 kg gesetzlich festgelegt.[15]
Kühlschränke hatten ursprünglich einen einschnappenden Schließmechanismus, der von innen nicht wieder geöffnet werden kann. Ausrangierte Kühlschränke wurden damals vom Handel nicht zurückgenommen, sondern anderweitig entsorgt oder abgestellt. Wenn die Fächer entnommen waren, konnten sich ein oder zwei kleine Kinder darin verstecken. Wurde die Tür zugezogen oder fiel die Tür eines zumindest schräg liegenden Schranks zu, war das Kind akustisch und von der Luftzufuhr her abgeschlossen. Nicht selten kam es dabei zu tödlichen Unfällen. Aus diesem Grund wurde der Refrigerator Safety Act erlassen.[16] Daraufhin wurden die Kühlschränke mit nur magnetisch schließenden Gummihohlwulstdichtungen ausgestattet, die mit relativ geringer Kraft aufgedrückt werden können.
This article uses material from the Wikipedia article "Kühlschrank", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
.max, Maya, Challenge, Competition, Rendering, 3D, Blender, Autodesk Maya, 3D Studio MAX (.3DS, .MAX), Maxwell, Animation, 3D Model, Autodesk Softimage, Cinema 4D, Rendering, Animation, 3Dartist, c4d, maxon, lowpoly, 3Dart, blender3D, 3D library