Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Licensed under Creative Commons Attribution-Share Alike 3.0 (Unkown).
Rohrleitungen dienen dem Transport von Fluiden (Rohrleitungstransport von Gasen, Flüssigkeiten oder riesel- bzw. pumpfähigen Feststoffen). Bestandteile sind insbesondere Rohre, Rohrformteile, Ausdehnungsstücke, Armaturen, Dichtungen, Verbindungselemente wie Flansche, Fittinge, Verschraubungen, Muffen sowie die Befestigungselemente (Rohrunterstützung). Im weiteren Sinne gehören auch noch die Pumpen, eventuelle Wärme- oder Kältedämmung sowie Überwachungssysteme zu dieser Zusammenstellung. Diese Einzelteile unterliegen häufig einer Normung. So ist es möglich, eine Rohrleitung wie aus einem Baukasten zusammenzustellen. Einzelne Rohrleitungen können zu ganzen Netzen zusammengefügt werden, die einzelnen Netzteile werden gegeneinander durch Erstabsperrungen abgesichert.
Rohrleitungen werden in der Nennweite von wenigen Millimetern bis zu einigen Metern ausgeführt und können im Falle einer Pipeline die Länge von Tausenden von Kilometern erreichen. Die Nenndruckstufen können vom Vakuum bis zu einigen hundert bar reichen. Hydraulikrohre haben Außendurchmesser 4–80 mm und sind für Berechnungsdrücke zwischen 120 und 750 bar ausgelegt (nach EN 13480 für Werkstoff P235TR2). Die Wahl der Werkstoffe einer Rohrleitung richtet sich nach statischen und dynamischen Belastungen (Nenndruckstufe, Verkehrslasten, Erddrücke, Drücke von innen oder außen, Druckstoß), mechanischen Beanspruchungen (beispielsweise Fließgeschwindigkeiten, Geschiebestoffe), korrosiver Beanspruchung sowie Art und Temperatur des zu transportierenden Materials.
Bestimmte konstruktive Festlegungen für Rohrleitungen wie Nenndruckstufe, Werkstoffe, Flanschausführungen, Dichtungen usw. werden in sogenannten Rohrklassen definiert. Je nach Temperatur des zu transportierenden Materials oder der Umgebungstemperatur kann eine Wärmedämmung, eine Rohrbegleitheizung oder -kühlung, aber auch eine Lecküberwachung der Rohrleitung erforderlich sein. Rohrleitungen mit einem zulässigen inneren Betriebsdruck von über 0,5 bar sind gemäß der Druckgeräterichtlinie 97/23/EG ein „Druckgerät“ und dürfen nur in Übereinstimmung mit dieser Richtlinie in Verkehr gebracht werden.
Bereits in der Antike wurden Rohrleitungen zur Wasserversorgung verwendet, so bei Pergamon oder in Köln (siehe Eifelwasserleitung). Sie waren meist Bestandteil von Aquädukten, um als Druckleitungen Höhenunterschiede zu überwinden. Ein Beispiel einer Druckrohrleitung (Siphon) aus dem Mittelalter ist der Tiergartentunnel in Blankenheim.
Historische Wasserleitungsrohre aus Holz werden als Deichel oder Teuchel bezeichnet. Zur Herstellung von Wasserleitungen wurden ausgebohrte Baumstämme aneinandergefügt. Deichelwasserleitungen waren vielerorts noch im 20. Jahrhundert in Betrieb.
Bei der Konstruktion, Planung und dem Bau von Druck-Rohrleitungen in Großanlagen wie Kraftwerken, Raffinerien und Produktionsstätten der chemischen Industrie laufen die einzelnen Planungsschritte mit der Erstellung der folgenden Planungsmittel ab:
Mit Hilfe dieser Planungsunterlagen ist es möglich, ein von Rohrleitungen bestimmtes Gebilde, wie beispielsweise ein Großkraftwerk, zu planen und zu bauen.
In den vergangenen Jahren haben Rohrleitungen aus Kunststoffen zunehmend an Bedeutung gewonnen. Sie sind mittlerweile mit 54 % Marktanteil und einem Volumen von 2.500.000 Tonnen/Jahr die wichtigsten Werkstoffe für Rohrsysteme in Europa. Am häufigsten werden Systeme aus Polyethylen (PE), vernetztem Polyethylen (PE-X), Polypropylen (PP) und Polyvinylchlorid (PVC-U) in den Bereichen Wasserversorgung, Abwasserentsorgung, Gasversorgung, Wärmeversorgung (nur PE-X und PP), und Industrierohrleitungen eingesetzt.
Auch für die kommenden Jahre wird für Rohrsysteme aus Kunststoff ein kontinuierliches Wachstum erwartet, das sich vor allem für PE auf die Sanierung bestehender Wasserversorgungsleitungen und für PVC-U und PP auf den Abwasserbereich stützt.
Ziel der Rohrleitungsauslegung ist die Bestimmung von
Zu Beginn der Planung wird eine Spezifikation, die in diesem Fall Rohrklasse genannt wird, erstellt. Hierin wird alles beschrieben, was für die Auswahl der Rohrleitungskomponenten entscheidend ist. Im Wesentlichen sind folgende Betriebsbedingungen zu bestimmen.
Abhängig vom gewünschten Massenstrom und dem maximal akzeptierten Druckverlust (bei maximal vorgesehener Strömungsgeschwindigkeit) wird ein bestimmter Rohrquerschnitt errechnet. Bei der Auswahl des Rohres wird der berechnete bzw. – falls nicht standardmäßig vorhanden – der nächsthöhere Nenninnendurchmesser gewählt. Nenndurchmesser sind eine normierte – und optimierte – Stufung von Rohrinnendurchmessern, um die Variantenvielfalt der eingesetzten Rohre zu minimieren.
Der Druckverlust ist ein wesentliches Kriterium für die Auslegung einer Rohrleitung. Der Druckverlustwert reagiert sehr empfindlich auf Änderungen des Rohrleitungsinnendurchmessers. Der Strömungsdruckverlust einer Rohrleitung ändert sich bei gegebenem Durchsatz mit der vierten Potenz des Durchmessers.
Die wirtschaftliche Abmessung mit minimalen Kosten ist erreicht wenn die folgenden Eigenschaften optimal ausgeglichen sind. So ergeben sich aus einer größeren Abmessung sowohl
Um Stöße durch Beschleunigungen oder Verzögerungen zu vermeiden, sollte die Strömungsgeschwindigkeit in Rohrleitungen gleich gehalten werden. In der Literatur werden die folgenden Richtwerte genannt:
Wasser | Quelle | |
---|---|---|
Saugleitungen, je nach Länge und Temperatur | 0,5 – 2,0 m/s | Steinmüller |
Saugleitungen von Kreiselpumpen | 1,0 – 1,5 m/s | Dubbel |
Saugleitungen von Kolbenpumpen | 0,8 – 1,0 m/s | Dubbel |
Druckleitungen, bei ständigem Betrieb | 1,5 – 5,0 m/s | Steinmüller |
Druckleitungen, bei Not oder Umgehungsbetrieb | 4,0 m/s | Steinmüller |
Druckleitungen bei Korrosionsgefahr durch O2 | 5,0 m/s | Steinmüller |
Druckleitungen von Kreiselpumpen | 2,5 – 3,0 m/s | Dubbel |
Druckleitungen von Kolbenpumpen | 1,0 – 2,0 m/s | Dubbel |
Gebrauchswasserleitungen | 4,0 – 6,0 m/s | Steinmüller |
Kühlwasserleitungen | 4,0 – 6,0 m/s | Steinmüller |
Kondensatleitungen | 1,0 – 2,0 m/s | Steinmüller |
Dampf | Quelle | |
Sattdampf für Fabrikationsleitungen | 25 – 30 m/s | Steinmüller |
Heißdampf, 40 bar im Kraftwerk | 30 – 40 m/s | Steinmüller |
Heißdampf, 80 bar im Kraftwerk | 16 – 22 m/s | Steinmüller |
Heißdampf, 120 bar im Kraftwerk | 15 – 20 m/s | Steinmüller |
(für kurze Leitungen bis zu 50 % höhere Werte) | Steinmüller | |
Frischdampfleitungen großer Kesseleinheiten | 40 – 60 m/s | Steinmüller |
Turbinen, Heißdampf, kleine Leistung | 35 m/s | Dubbel |
Turbinen, Heißdampf, mittlere Leistung | 40 – 50 m/s | Dubbel |
Turbinen, Heißdampf, große Leistung | 50 – 70 m/s | Dubbel |
Turbinen, Sattdampf | 25 m/s | Dubbel |
Turbinen, Abdampf | 15 – 25 m/s | Dubbel |
Kolbendampfmaschinen, Heißdampf | 40 – 50 m/s | Dubbel |
Kolbendampfmaschinen, Sattdampf | 25 – 30 m/s | Dubbel |
Luft | Quelle | |
Druckluft in Betriebsnetzen | 2 – 10 m/s | Steinmüller |
Warmluft zu Heizzwecken | 0,8 – 1,0 m/s | Steinmüller |
Kolbenverdichter, Saugleitung | 16 – 20 m/s | Dubbel |
Kolbenverdichter, Druckleitung | 25 – 30 m/s | Dubbel |
Turboverdichter, Saug- und Druckleitung | 20 – 25 m/s | Dubbel |
Gas | Quelle | |
Niederdruck, lange Leitungen | 5 – 10 m/s | Steinmüller |
Hochdruck, kurze Leitungen | 20 – 30 m/s | Steinmüller |
Öl | Quelle | |
Schweröl, beheizt, Druckleitungen | 1 – 2 m/s | Steinmüller |
Schweröl, beheizt, Saugleitungen | 0,5 – 1 m/s | Steinmüller |
Schmieröl | 0,5 – 1 m/s | Dubbel |
Benzin, Kerosin: DN 25 | 5 m/s *) | Steinmüller |
Benzin, Kerosin: DN 100 | 2,5 m/s *) | Steinmüller |
Benzin, Kerosin: DN 200 | 1,8 m/s *) | Steinmüller |
Quellen:
Ausschlaggebend für die Dimensionierung ist die Wirtschaftliche Geschwindigkeit. Sie ergibt sich aus dem Optimum der Summe aus den Investitionskosten für die Rohrleitung, den Investitionskosten der Maschinenanlage (Pumpen, Verdichter) und den Energie- und Wartungskosten über die gesamte Betriebszeit.
Für die Rohrleitungskomponenten gibt es viele für die Hersteller verpflichtende Normen. Die Ermittlung der notwendigen Wandstärke (nach der Kesselformel) ist in diesen Normen berücksichtigt.
Für die Planung muss ein Nenndruck gewählt werden, der natürlich immer über dem maximal auftretenden Betriebsdruck sein muss. Hohe Betriebstemperaturen müssen berücksichtigt werden, weil hierdurch die Materialfestigkeit herabsetzt wird. So kann die Erhöhung des Nenndruckes um ein oder mehrere Stufen notwendig sein.
Rohrleitungen für Feststoffe (z. B. Granulate, Mehl, Stäube) werden oftmals als Schurre bezeichnet. Man findet sie zum Beispiel in der Zementindustrie oder in Mühlen für Getreide. Sie zeichnen sich durch große Radien bei Richtungsänderungen aus, die zugehörigen Rohrbögen sind oftmals aus einem besonders verschleißfesten Material bis hin zu künstlichem Basalt ausgeführt.
Weiterhin können sich Feststoffe während des normalen Betriebes im Inneren von Rohrleitungen ablagern. Diese Ablagerungen können zur Blockade der Strömung bis hin zu einer Verstopfung der Leitung führen und müssen daher regelmäßig durch eine Rohrreinigung beseitigt werden.
Als wichtiger Bestandteil technischer Anlagen müssen Rohrleitungen im Zuge der Anlagensicherheit (Betriebssicherheit) gewartet werden. Dies gilt insbesondere für Rohrleitungen, die neben der Dichtheit weitere physikalische Eigenschaften wie einen bestimmten Reibungskoeffizienten oder Wärmedurchgangskoeffizienten erfüllen müssen. Besondere Vorschriften gelten für druckbelastete Rohrleitungen und die entsprechenden Durchflussmedien, beispielsweise Rohrleitungen für Wasserdampf in Dampfkraftwerken.
Rohrleitungen mit einem inneren Überdruck von mehr als 0,5 bar für entzündliche, leichtentzündliche, hochentzündliche, ätzende, giftige Gase oder Flüssigkeiten sind überwachungsbedürftige Anlagen im Sinne der Betriebssicherheitsverordnung und müssen je nach Gefährdungspotential durch zugelassene Überwachungsstellen oder befähigte Personen vor Inbetriebnahme und regelmäßig innerhalb bestimmter Fristen geprüft werden.
Die Wartung umfasst:
This article uses material from the Wikipedia article "Rohrleitung", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD