Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Eigenschaften | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemein | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name, Symbol, Ordnungszahl | Titan, Ti, 22 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Serie | Übergangsmetalle | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gruppe, Periode, Block | 4, 4, d | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aussehen | silbrig metallisch | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS-Nummer | 7440-32-6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Massenanteil an der Erdhülle | 0,41 %[1] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomar [2] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atommasse | 47,867(1)[3] u | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomradius (berechnet) | 140 (176) pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kovalenter Radius | 160 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronenkonfiguration | [Ar] 3d2 4s2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Austrittsarbeit | 4,33 eV[4] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. Ionisierungsenergie | 658,8 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2. Ionisierungsenergie | 1309,8 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3. Ionisierungsenergie | 2652,5 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4. Ionisierungsenergie | 4174,6 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physikalisch [2] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Aggregatzustand | fest | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kristallstruktur | hexagonal (bis 882 °C, darüber krz) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dichte | 4,50 g/cm3 (25 °C)[5] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohshärte | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetismus | paramagnetisch (Χm = 1,8 · 10−4)[6] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Schmelzpunkt | 1941 K (1668 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Siedepunkt | 3533 K[7] (3260 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molares Volumen | 10,64 · 10−6 m3/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Verdampfungswärme | 457 kJ/mol[7] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Schmelzwärme | 18,7 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Schallgeschwindigkeit | 4140 m/s bei 293,15 K | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Spezifische Wärmekapazität | 523[1] J/(kg · K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektrische Leitfähigkeit | 2,5 · 106 A/(V · m) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wärmeleitfähigkeit | 22 W/(m · K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mechanisch [2] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
E-Modul | 105 GPa (= 105 kN/mm2)[8] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Poissonzahl | 0,34[8] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemisch [2] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidationszustände | +2, +3, +4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxide (Basizität) | TiO2 (amphoter) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Normalpotential | −0,86 V (TiO2+ + 2 H+ + 4 e− → Ti + H2O) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elektronegativität | 1,54 (Pauling-Skala) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotope | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weitere Isotope siehe Liste der Isotope | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NMR-Eigenschaften | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sicherheitshinweise | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. |
Titan ist ein chemisches Element mit dem Elementsymbol Ti und der Ordnungszahl 22. Es gehört zu den Übergangsmetallen und steht im Periodensystem in der 4. Nebengruppe (4. IUPAC-Gruppe) oder Titangruppe. Das Metall ist weiß-metallisch glänzend, hat eine geringe Dichte, ist dehnbar, korrosions- und temperaturbeständig.
In der Erdkruste gehört Titan zu den zehn häufigsten Elementen, kommt jedoch nur chemisch gebunden als Bestandteil von Mineralien vor.
Titan wurde 1791 in England von dem Geistlichen und Amateurchemiker William Gregor im Titaneisen entdeckt. 1795 entdeckte es der deutsche Chemiker Heinrich Klaproth im Rutilerz ebenfalls und gab dem Element – angelehnt an das griechische Göttergeschlecht der Titanen – seinen heutigen Namen.
Es gelang jedoch erst im Jahre 1831 Justus von Liebig, aus dem Erz metallisches Titan zu gewinnen.[10] Zu 99,9 % reines Titan stellte 1910 erstmals Matthew A. Hunter (1878–1961) her, indem er in einer Stahlbombe Titantetrachlorid (Titan(IV)-chlorid) mit Natrium auf 700 °C bis 800 °C erhitzte.
Erst Ende der 1930er Jahre konnte William Justin Kroll ein für die Technik geeignetes Verfahren, den sogenannten Kroll-Prozess, entwickeln, das 1940 patentiert wurde.[11] In der Folge konnte durch Einführung der großtechnischen Reduktion von Titantetrachlorid mit Magnesium das Titan für kommerzielle Anwendungen erschlossen werden.
Titan kommt in der Erdkruste nur in Verbindungen mit Sauerstoff als Oxid vor. Es ist keineswegs selten, steht es doch mit einem Gehalt von 0,565 % an 9. Stelle der Elementhäufigkeit in der kontinentalen Erdkruste.[12] Meist ist es aber nur in geringer Konzentration vorhanden.
Wichtige Mineralien sind:
Die Hauptvorkommen liegen in Australien, Skandinavien, Nordamerika, dem Ural und Malaysia. Im Jahr 2010 wurden in Paraguay Vorkommen entdeckt, deren Ausbeutung bis dato jedoch lediglich geplant ist.[13]
Meteoriten können Titan enthalten. In der Sonne und in Sternen der Spektralklasse M wurde ebenfalls Titan nachgewiesen. Auf dem Erdmond sind ebenso Vorkommen vorhanden.[14][15] Gesteinsproben der Mondmission Apollo 17 enthielten bis zu 12,1 % Titan(IV)-oxid. Es gibt Überlegungen für Asteroidenbergbau.
Auch in Kohleaschen, Pflanzen und im menschlichen Körper ist es enthalten.
Rang | Land | 2003 | 2004 | 2005 |
---|---|---|---|---|
1 | Australien Australien | 1 300 | 2 110 | 2 230 |
2 | Sudafrika Südafrika | 1 070 | 1 130 | 1 130 |
3 | Kanada Kanada | 810 | 870 | 870 |
4 | China Volksrepublik Volksrepublik China | 400 | 840 | 820 |
5 | Norwegen Norwegen | 380 | 370 | 420 |
Reines Titan kommt in der Erde kaum vor und wird aus Titaneisenerz (Ilmenit) oder Rutil gewonnen. Der dabei verwendete Herstellungsprozess ist sehr aufwendig, was sich im hohen Preis für Titan niederschlägt. Es ist 35-mal teurer als verbreitete Stahllegierungen bzw. 200-mal teurer als Rohstahl (Stand 2013). So kostete im Jahre 2008 eine Tonne Titanschwamm durchschnittlich 12.000 Euro.[10]
Seit Entdeckung des Kroll-Prozesses ist die Herstellung fast unverändert. Meist vom Ilmenit oder Rutil ausgehend, wird angereichertes Titandioxid in der Hitze mit Chlor und Kohle zu Titantetrachlorid und Kohlenstoffmonoxid umgesetzt. Anschließend erfolgt mit flüssigem Magnesium die Reduktion des Titantetrachlorids zu Titan. Zur Herstellung von bearbeitbaren Legierungen muss der dabei erhaltene Titanschwamm im Vakuum-Lichtbogenofen umgeschmolzen werden.
Größter Produzent von Titan und Titanlegierungen ist die VSMPO-AVISMA mit Firmensitz in Werchnjaja Salda bzw. Jekaterinburg im Ural, die sich seit 12. September 2006 indirekt über die Holding Rosoboronexport in russischem Staatsbesitz befindet.
Reinstes Titan gewinnt man nach dem Van-Arkel-de-Boer-Verfahren.
Titan bildet an der Luft eine äußerst beständige oxidische Schutzschicht (Passivierungsschicht) aus, die es gegen viele Medien schützt. Bemerkenswert ist die hohe Festigkeit bei einer relativ geringen Dichte. Es ist daher besonders für Anwendungen geeignet, bei denen es auf hohe Korrosionsbeständigkeit, Festigkeit und geringes Gewicht ankommt. Oberhalb einer Temperatur von 400 °C gehen die Festigkeitseigenschaften aber schnell zurück. Hochreines Titan ist duktil, das heißt, es lässt sich plastisch verformen. Bei höheren Temperaturen versprödet es durch Aufnahme von Sauerstoff, Stickstoff und Wasserstoff sehr schnell und verliert damit seine leichte Formbarkeit.
Zu beachten ist auch die hohe Reaktivität von Titan mit vielen Medien bei erhöhten Temperaturen oder erhöhtem Druck, wenn die Passivierungsschicht diesen Bedingungen nicht standhält. Hier kann die Reaktionsgeschwindigkeit bis zur Explosion anwachsen. In reinem Sauerstoff bei 25 °C und 25 bar verbrennt Titan von einer frischen Schnittkante ausgehend vollständig zum Titandioxid. Trotz Passivierungsschicht reagiert es bei Temperaturen oberhalb von 880 °C mit Sauerstoff, bei Temperaturen ab 550 °C mit Chlor. Titan reagiert („brennt“) auch mit reinem Stickstoff, was zum Beispiel bei spanender Bearbeitung wegen der Hitzeentwicklung unbedingt beachtet werden muss.
Gegen verdünnte Schwefelsäure, Salzsäure, chloridhaltige Lösungen, kalte Salpetersäure, Laugen wie Natriumhydroxid und die meisten organischen Säuren ist Titan beständig, löst sich dagegen in konzentrierter Schwefelsäure unter Bildung des violetten Titansulfats langsam auf. Wegen der Explosionsgefahr sind bei Anwendungen in Chlorgas die Betriebsbedingungen strikt einzuhalten.
Die mechanischen Eigenschaften und das korrosive Verhalten lassen sich durch meist geringfügige Legierungszusätze von Aluminium, Vanadium, Mangan, Molybdän, Palladium, Kupfer, Zirkonium und Zinn erheblich verbessern.
Unterhalb einer Temperatur von 0,4 K[17] wird Titan supraleitend. Unterhalb von 880 °C liegt Titan in einer hexagonal dichtesten Kugelpackung vor. Oberhalb von 880 °C bildet sich eine kubisch-raumzentrierte Gitterstruktur aus.
Titan in Pulverform ist ein selbst entzündbarer (pyrophorer) Feststoff. Es kann sich bei Raumtemperatur an der Luft ohne Energiezufuhr erhitzen und schließlich entzünden. Die Zündbereitschaft hängt unter anderem sehr stark von der Korngröße und dem Verteilungsgrad ab. Das Metall in kompakter Form ist nicht brennbar. Es nimmt jedoch bei höheren Temperaturen leicht Sauerstoff, Stickstoff und Wasserstoff auf, dies bewirkt Versprödung und Härtesteigerung.[9]
Titan kann durch gezieltes Erzeugen einer Oxidschicht mittels Anodisieren farblich gestaltet werden. Dabei wird die Farbe durch Lichtbrechung an unterschiedlich dicken Schichten und nicht durch Farbpigmente erzielt, vgl. Dünnschichtinterferenz. Bei 10–25 nm Schichtdicke ergibt sich eine Goldfarbe, bei 25–40 nm Lila, bei 40-50 nm Dunkelblau, bei 50–80 nm Hellblau, bei 80–120 nm Gelb, bei 120–150 nm Orange, bei 150–180 nm Lila, bei 180–210 nm Grün.
Titan-Legierungen werden häufig nach dem US-amerikanischen Standard ASTM mit Grade 1 bis 35 charakterisiert. Grade 1 bis 4 bezeichnet Rein-Titan verschiedener Reinheitsgrade.[18]
Rein-Titan hat die Werkstoffnummer 3.7034; der wirtschaftlich bedeutendste (auch für Turbolader-Schaufeln) eingesetzte[19] Werkstoff Ti-6Al-4V („Ti64“; 6 % Aluminium, 4 % Vanadium, ASTM: Grade 5) hat die Nummer 3.7165 (industrielle Anwendung) und 3.7164 (Luftfahrtanwendungen).[20]
Weitere wichtige Titanlegierungen, die hauptsächlich in der Luftfahrtindustrie eingesetzt werden:
Bezeichnung | Legierungs-Zusammensetzung (in %) | Elastizitätsmodul in GPa | Dichte in g·cm−3 |
---|---|---|---|
Ti6246 | Ti-6Al-2Sn-4Zr-6Mo | 125,4 | 4,51 |
Ti6242 | Ti-6Al-2Sn-4Zr-2Mo | 4,50 |
Titan ist wegen seiner hexagonalen Kristallstruktur relativ schlecht umformbar. Bei der Herstellung von Titanblech aus Titanblöcken macht das Walzen ca. 50 % der gesamten Kosten des Produktes aus.
Nitinol (Nickel-Titan) ist eine Formgedächtnis-Legierung und hoch pseudo-elastisch, weshalb es für Brillengestelle und Exstirpationsnadeln eingesetzt wird.
Titan wird vor allem als Mikrolegierungsbestandteil für Stahl verwendet. Es verleiht Stahl bereits in Konzentrationen von 0,01–0,1 Prozent Massenanteil eine hohe Zähigkeit, Festigkeit und Duktilität. In rostfreien Stählen verhindert Titan die interkristalline Korrosion.
Titanbasislegierungen sind mit ca. 25 €/kg sehr teuer. Sie werden daher nur für höchste Anforderungen eingesetzt:
Anwendungen in Seewasser und chloridhaltigen Medien:
Outdoor- und Sportartikel:
Verwendung in Form von Verbindungen:
Verbindungen des Titans mit Bor, Kohlenstoff oder Stickstoff finden Verwendung als Hartstoffe. Auch zur Herstellung von Cermets, speziellen Hartmetallsorten, werden Titanverbindungen eingesetzt.
Konstruktionsteile:
Medizin:
Elektronik:
Elektrische Zigaretten:
Sonstige Anwendungsgebiete:
TiO2+ bildet mit Wasserstoffperoxid einen charakteristischen gelb-orangen Komplex (Triaquohydroxooxotitan(IV)-Komplex), der auch zum photospektrometrischen Nachweis geeignet ist. Die Probe wird mit einem Überschuss konzentrierter Schwefelsäure gekocht und in ein Eisbad mit Wasserstoffperoxid gegossen. Bei lautem Zischen färbt sich das Eisbad gelb-orange[21][22].
Aufgrund der großen farblichen Ähnlichkeit wird dieser Nachweis umgangssprachlich auch als „Tequila Sunrise-Nachweis“ bezeichnet.
Titan und Titanlegierungen sind unter anderem genormt in:
Titan ist als Pulver feuergefährlich, kompakt ungefährlich. Die meisten Titansalze gelten als harmlos. Unbeständige Verbindungen wie Titantrichlorid sind stark korrosiv, da sie mit Spuren von Wasser Salzsäure bilden.
Titantetrachlorid wird in Rauchgranaten eingesetzt; es reagiert mit der Luftfeuchte und bildet einen weißen Rauch aus Titandioxid, außerdem Salzsäurenebel.
Biologische Nachteile des Titans im menschlichen Körper sind zurzeit unbekannt. So lösten die bisher aus Titan hergestellten Hüftgelenke oder Kieferimplantate, im Gegensatz zu Nickel, keinerlei Allergien aus.[10]
Während metallisches Titan wegen der hohen Herstellungskosten nur anspruchsvollen technischen Anwendungen vorbehalten bleibt, ist das relativ preiswerte und ungiftige Farbpigment Titandioxid ein Begleiter des alltäglichen Lebens geworden. Praktisch alle heutigen weißen Kunststoffe und Farben und auch Lebensmittelfarben enthalten Titandioxid (es ist in Lebensmitteln als E 171 zu finden). Aber auch in der Elektro- und Werkstofftechnik und neuerdings auch in der Herstellung von Hochleistungsakkumulatoren für den Fahrzeugantrieb (Lithium-Titanat-Akku) werden Titanverbindungen eingesetzt.
H | He | ||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og |
Alkalimetalle | Erdalkalimetalle | Lanthanoide | Actinoide | Übergangsmetalle | Metalle | Halbmetalle | Nichtmetalle | Halogene | Edelgase | Chemie unbekannt |
This article uses material from the Wikipedia article "Titanlegierung", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
Datenbank,rohs,reach,Compliancy,Verzeichnis,Liste,Information,Substanz,Material,Restriktion,Datenblatt,Spezifikation