Our 3D CAD supplier models have been moved to 3Dfindit.com, the new visual search engine for 3D CAD, CAE & BIM models.
You can log in there with your existing account of this site.
The content remains free of charge.
Eigenschaften | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemein | |||||||||||||||||||||||||||||||||||||||||||
Name, Symbol, Ordnungszahl | Magnesium, Mg, 12 | ||||||||||||||||||||||||||||||||||||||||||
Serie | Erdalkalimetalle | ||||||||||||||||||||||||||||||||||||||||||
Gruppe, Periode, Block | 2, 3, s | ||||||||||||||||||||||||||||||||||||||||||
Aussehen | silbrig weiß | ||||||||||||||||||||||||||||||||||||||||||
CAS-Nummer | 7439-95-4 | ||||||||||||||||||||||||||||||||||||||||||
Massenanteil an der Erdhülle | 1,94 %[1] | ||||||||||||||||||||||||||||||||||||||||||
Atomar [2] | |||||||||||||||||||||||||||||||||||||||||||
Atommasse | 24,305 (24,304 – 24,307)[3] u | ||||||||||||||||||||||||||||||||||||||||||
Atomradius (berechnet) | 150 (145) pm | ||||||||||||||||||||||||||||||||||||||||||
Kovalenter Radius | 141 pm | ||||||||||||||||||||||||||||||||||||||||||
Van-der-Waals-Radius | 173 pm | ||||||||||||||||||||||||||||||||||||||||||
Elektronenkonfiguration | [Ne] 3s2 | ||||||||||||||||||||||||||||||||||||||||||
Austrittsarbeit | 3,66 eV[4] | ||||||||||||||||||||||||||||||||||||||||||
1. Ionisierungsenergie | 737,7 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
2. Ionisierungsenergie | 1450,7 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
Physikalisch [2] | |||||||||||||||||||||||||||||||||||||||||||
Aggregatzustand | fest | ||||||||||||||||||||||||||||||||||||||||||
Kristallstruktur | hexagonal | ||||||||||||||||||||||||||||||||||||||||||
Dichte | 1,738 g/cm³ (20 °C)[5] | ||||||||||||||||||||||||||||||||||||||||||
Mohshärte | 2,5 | ||||||||||||||||||||||||||||||||||||||||||
Magnetismus | paramagnetisch (Χm = 1,2 · 10−5)[6] | ||||||||||||||||||||||||||||||||||||||||||
Schmelzpunkt | 923 K (650 °C) | ||||||||||||||||||||||||||||||||||||||||||
Siedepunkt | 1383 K[7] (1110 °C) | ||||||||||||||||||||||||||||||||||||||||||
Molares Volumen | 14,00 · 10−6 m3/mol | ||||||||||||||||||||||||||||||||||||||||||
Verdampfungswärme | 132 kJ/mol[7] | ||||||||||||||||||||||||||||||||||||||||||
Schmelzwärme | 8,7 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||
Schallgeschwindigkeit | 4602 m/s bei 293,15 K | ||||||||||||||||||||||||||||||||||||||||||
Spezifische Wärmekapazität | 1023[1] J/(kg · K) | ||||||||||||||||||||||||||||||||||||||||||
Elektrische Leitfähigkeit | 22,7 · 106 A/(V · m) | ||||||||||||||||||||||||||||||||||||||||||
Wärmeleitfähigkeit | 160 W/(m · K) | ||||||||||||||||||||||||||||||||||||||||||
Chemisch [2] | |||||||||||||||||||||||||||||||||||||||||||
Oxidationszustände | 1,[8] 2 | ||||||||||||||||||||||||||||||||||||||||||
Normalpotential | −2,372 V (Mg2+ + 2 e− → Mg)[9] | ||||||||||||||||||||||||||||||||||||||||||
Elektronegativität | 1,31 (Pauling-Skala) | ||||||||||||||||||||||||||||||||||||||||||
Isotope | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Weitere Isotope siehe Liste der Isotope | |||||||||||||||||||||||||||||||||||||||||||
NMR-Eigenschaften | |||||||||||||||||||||||||||||||||||||||||||
Sicherheitshinweise | |||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. |
Magnesium ist ein chemisches Element mit dem Elementsymbol Mg (Alchemie: ⚩[12]) und der Ordnungszahl 12. Im Periodensystem der Elemente steht es in der zweiten Hauptgruppe bzw. der 2. IUPAC-Gruppe und gehört damit zu den Erdalkalimetallen.
Magnesium ist eines der zehn häufigsten Elemente der Erdkruste. Es kommt in zahlreichen Mineralen sowie im Blattgrün der Pflanzen vor.
Die Herkunft der Elementbezeichnung wird in der Literatur unterschiedlich dargestellt:
Allerdings scheinen alle angegebenen Herleitungen etymologisch wiederum von den Magneten bzw. deren eponymen Heros Magnes herzustammen.
Magnesiumverbindungen waren schon Jahrhunderte vor der Herstellung elementaren Magnesiums bekannt und in Gebrauch. Magnesia alba bezeichnete Magnesiumcarbonat, während Magnesia der gebräuchliche Name für Magnesiumoxid war.
Der schottische Physiker und Chemiker Joseph Black war der erste, der Magnesiumverbindungen im 18. Jahrhundert systematisch untersuchte. 1755 erkannte er in seinem Werk De humore acido a cibis orto et Magnesia alba den Unterschied zwischen Kalk (Calciumcarbonat) und Magnesia alba (Magnesiumcarbonat), die zu dieser Zeit oft verwechselt wurden. Er fasste Magnesia alba als Carbonat eines neuen Elements auf. Deswegen wird Black oft als Entdecker des Magnesiums genannt, obwohl er nie elementares Magnesium darstellte.
1808 gewann Sir Humphry Davy Magnesium durch Elektrolyse angefeuchteten Magnesiumhydroxids mit Hilfe einer Voltaschen Säule – allerdings nicht in reiner Form, sondern als Amalgam, da er mit einer Kathode aus Quecksilber arbeitete. So zeigte er, dass Magnesia das Oxid eines neuen Metalls ist, das er zunächst Magnium nannte.
1828 gelang es dem französischen Chemiker Antoine Bussy durch das Erhitzen von trockenem Magnesiumchlorid mit Kalium als Reduktionsmittel, geringe Mengen von reinem Magnesium darzustellen. 1833 stellte Michael Faraday als erster Magnesium durch die Elektrolyse von geschmolzenem Magnesiumchlorid her. Basierend auf diesen Versuchen arbeitete der deutsche Chemiker Robert Wilhelm Bunsen in den 1840er und 1850er Jahren an Verfahren zur Herstellung von Magnesium durch Elektrolyse von Salzschmelzen mit Hilfe des von ihm entwickelten Bunsenelements. 1852 entwickelte er eine Elektrolysezelle zur Herstellung größerer Mengen von Magnesium aus geschmolzenem, wasserfreien Magnesiumchlorid. Dieses Verfahren ist bis heute zur Gewinnung von Magnesium bevorzugt.
Die technische Erzeugung von Magnesium begann 1857 in Frankreich nach einem Verfahren von Henri Etienne Sainte-Claire Deville und H. Caron. Beim sogenannten Deville-Caron-Prozess wird ein Gemisch aus wasserfreiem Magnesiumchlorid und Calciumfluorid mit Natrium reduziert. In England begann die Firma Johnson Matthey um 1860 mit der Magnesiumherstellung nach einem ähnlichen Verfahren. Aufgrund von Fabrikationsschwierigkeiten blieben diese frühen Unternehmungen allerdings unwirtschaftlich.
Magnesium kommt in der Natur wegen seiner Reaktionsfreudigkeit nicht in elementarer Form vor. Als Mineral tritt es überwiegend in Form von Carbonaten, Silicaten, Chloriden und Sulfaten auf. In Form von Dolomit ist ein Magnesiummineral sogar gebirgsbildend, so z. B. in den Dolomiten.
Die wichtigsten Mineralien sind Dolomit CaMg(CO3)2, Magnesit (Bitterspat) MgCO3, Olivin (Mg, Fe)2 [SiO4], Enstatit MgSiO3 und Kieserit MgSO4 · H2O.
Andere Mineralien sind:
In Wasser gelöst, verursacht es zusammen mit dem Calcium die Wasserhärte. Im Meerwasser ist es zu mehr als 1 kg/m³ enthalten.
Die Gewinnung von Magnesium erfolgt vorwiegend über zwei Wege:
Der Pidgeon-Prozess ist heute der bedeutendste Herstellungsprozess und wird hauptsächlich in China verwendet.
88 % der weltweiten Magnesiumproduktion findet in China statt, dort wurden 2015 ca. 800.000 t Tonnen Magnesiummetall produziert. Danach folgen mit jeweils nur wenigen Prozent Marktanteil Russland, Israel und Kasachstan.[13]
Bei der Produktion von 1 kg Magnesium durch den Pidgeon-Process entstehen Treibhausgase mit einem CO2-Äquivalent von etwa 31 kg (zum Vergleich: Für 1 kg Stahl entstehen zwischen 0,5 und 2 kg CO2-Äquivalente).[14]
Das feste, silbrig glänzende Leichtmetall Magnesium ist etwa ein Drittel leichter als Aluminium. Reinmagnesium hat eine geringe Festigkeit und Härte. Sein E-Modul liegt bei etwa 45 GPa. An Luft überzieht sich Magnesium mit einer Oxidschicht, die im Gegensatz zu Aluminium nicht vollständig deckend ist. Grund dafür ist, dass das Magnesiumoxid ein geringeres Molvolumen als Magnesium selbst hat (MgO: 10,96 cm3/mol, Mg: 13,96 cm3/mol); s. Pilling-Bedworth-Verhältnis.
Dünne Bänder oder Folien lassen sich leicht entzünden. Es verbrennt an der Luft mit einer grellweißen Flamme zu Magnesiumoxid MgO und wenig Magnesiumnitrid Mg3N2. Frisch hergestelltes Magnesiumpulver kann sich an der Luft bis zur Selbstentzündung erwärmen. Gefährliche Reaktionen sind bei höheren Temperaturen, das heißt besonders bei Schmelzflüssigem zu erwarten. Auch in vielen Oxiden wie Kohlenstoffmonoxid, Stickoxid und Schwefeldioxid verbrennt Magnesium.
Mit Wasser reagiert Magnesium unter Bildung von Wasserstoff:
Dabei bildet sich ein schwer löslicher Überzug aus Magnesiumhydroxid, der die Reaktion weitgehend zum Erliegen bringt (Passivierung). Schon schwache Säuren, wie beispielsweise Ammoniumsalze, genügen um die Hydroxidschicht zu lösen, da sie die Hydroxidionen zu Wasser umsetzen und sich lösliche Salze bilden. Ohne Passivierung verläuft die exotherme Reaktion heftig; umso heftiger, je feiner der Magnesiumstaub. Mit Luft bildet der freigesetzte Wasserstoff leicht ein explosionsfähiges Gemisch (Knallgas). Gegen Fluorwasserstoffsäure und Basen ist es im Gegensatz zum Aluminium relativ beständig. Grund dafür ist die geringe Löslichkeit des als Überzug gebildeten Magnesiumfluorids (MgF2), die eine weitere Bildung von Mg(OH)3−-Ionen verhindern.
Magnesiumband und -draht wird in (Foto-)Blitzlampen beziehungsweise früher als Blitzlichtpulver, Magnesiumpulver in Brandsätzen, -bomben und Leuchtmunition, aber auch als Zusatz in Feuersteinen für Feuerzeuge verwendet. Häufig dienen Magnesiumstäbe als Opferanoden, die Teile aus edleren Metallen vor Korrosion schützen.
In der Metallurgie findet Magnesium vielseitige Verwendung,
In der organischen Chemie wird es zur Herstellung von Grignard-Verbindungen genutzt.
Weil sich Magnesium sehr leicht entzündet, wird es auch als sehr robustes Feuerzeug verwendet. Diese als Fire Starter Kits vertriebenen Magnesiumblöcke haben auf einer Seite einen Stab, dessen Abrieb sich an der Luft spontan entzündet, wie der Feuerstein eines Feuerzeugs. Die Prozedur ähnelt stark der in der Steinzeit üblichen Methode, durch Feuerstein und Zunder Feuer zu machen, wobei das Magnesium die Rolle des Zunders übernimmt. Zuerst werden mit einem Messer Späne vom Magnesiumblock abgeschabt und auf oder unter dem eigentlichen Brennmaterial platziert. Anschließend werden durch Schaben am rückwärtigen „Feuerstein“ (z. B. mit dem Rücken des Messers) Funken möglichst nahe an den Magnesiumspänen erzeugt, um diese zu entzünden.
Die wichtigste Eigenschaft von Magnesiumlegierungen, die ihnen gegenüber Aluminium und seinen Legierungen zu Bedeutung verholfen hat, ist der mit ihnen mögliche Leichtbau. Mit einer Dichte von rund 1,75 g/cm³ ist der Unterschied zu Aluminiumleichtbau mit einer Dichte um 2,75 g/cm³ deutlich. Hinzu kommt, dass der Schmelzbereich zwischen 430 und 630 °C, also energiesparend niedriger liegt. Die mechanischen Eigenschaften wie Zugfestigkeit und Härte liegen jedoch deutlich tiefer als bei Aluminiumlegierungen. Die niedere Dichte machte Magnesium schon früh für mobile Anwendungen interessant. Die erste Grossanwendung fand schon vor dem Ersten Weltkrieg beim Bau des Gerüstes für die starren Zeppelinluftschiffe. In Kraftfahrzeugen nutzte man Magnesiumlegierungen zur Herstellung von Gehäuseteilen sowie zur Herstellung von Felgen für Mobile aller Art. Nach 1930 verwendete man Magnesiumlegierungen zunehmend im Flugzeugbau, denn die mit ihnen möglichen Gewichtseinsparungen, erlaubten energieeffizientere Flüge wie auch höhere Zuladung. All dies führte zu einem raschen Ausbau der Magnesiumerzeugung in Deutschland (Elektron aus der Chemischen Fabrik Griesheim) und nach 1940 auch in den USA. „Elektron“ wurde unmittelbar nach Produktionsanlauf zum markenrechtlich geschützten Namen für die ersten Magnesiumlegierungen.
Andere Verwendungsmöglichkeiten für Magnesiumguss boten sich im Zuge der technischen Entwicklung an, teils kriegsbedingt, teils konstruktiv vorausschauend und zugleich die Legierungen optimierend. Als Werkstoffe auf Magnesiumbasis wurden die Legierungen Mg-Al-, Mg-Mn-, Mg-Si-, Mg-Zn- und schließlich Mg-Al-Zn-Legierungen entwickelt.
Die Getriebegehäuse des VW Käfers wurde in Millionenauflage aus einer Mg-Si-Legierung gegossen. Heute werden Magnesiumlegierungen nicht allein unter dem Gesichtspunkt Gewichtsersparnis verwendet, sondern sie zeichnen sich zudem durch hohe Dämpfung aus. Dies führt bei Schwingungsbelastung zu einer Verringerung der Vibration und Geräuschemission. Auch aus diesem Grunde sind Magnesiumlegierungen interessante Werkstoffe im Motorenbau, wie überhaupt im Automobilbau geworden. So werden nicht nur Teile des Motors aus Magnesiumlegierung hergestellt, sondern zunehmend auch für den Guss von Motorblöcken das Hybridverfahren/Hybridguss angewendet, erstmals in der Großserie im Alfa Romeo 156, später auch bei BMW (siehe hierzu auch BMW N52).
Im Druckgießverfahren (siehe auch unter Formguss) lassen sich viele, auch großflächige, dünnwandige Bauteile endabmessungsnah und ohne kostenintensive Nachbearbeitung herstellen, so z. B. Felgen, Profile, Gehäuse, Türen, Motorhauben, Kofferraumdeckel, Handbremshebel und anderes. Nicht nur im Automobilbau, auch im Maschinenbau wird mit Teilen aus Mg-Al-Zn-Legierungen konstruiert.
Die Bestrebungen nach Leichtbau führten bereits zu Ende des 20. Jahrhunderts zu Magnesium-Lithium-Legierungen, noch leichteren Legierungen aus Magnesium mit Zusatz von Lithium.
Jüngste Forschungen versprechen ein hohes Entwicklungspotenzial von Magnesiumwerkstoffen als resorbierbares Implantatmaterial (z. B. als Stent) für den menschlichen Körper. Magnesiumwerkstoffe müssen in der Anwendung vor Kontaktkorrosion geschützt werden. Die Korrosionsbeständigkeit gegen normale atmosphärische Einflüsse ist hingegen gut. Das Kontaktkorrosionsverhalten wäre bei einer Verwendung als zeitlich begrenzt einzusetzendes Implantatmaterial ein entscheidender Vorteil, da es sich nach einer bestimmten Zeit gefahrlos auflösen würde. Damit entfielen Risiken und Kosten einer Operation zur Implantatentnahme.
Bei der Kalkung von Acker- und Grünlandflächen kommt Magnesium in Form von Magnesiumoxid oder Magnesiumcarbonat zum Einsatz, um den Magnesiumentzug des Bodens durch die Pflanzen wieder auszugleichen. Weiterhin wird der Boden-pH-Wert angehoben und die Verfügbarkeit weiterer Nährstoffe verbessert. Hierbei wird die Magnesiumverbindung meist zusammen mit Kalk als magnesium- und calciumhaltiger Mehrnährstoffdünger angewendet.[15] Auch das natürlich als Bobierrit vorkommende Magnesiumphosphat Mg3(PO4)2 (Trimagnesiumphosphat)[16] sowie Magnesiumnitrat[17] werden als Mehrnährstoffdünger verwendet.
Magnesium gehört zu den Essentiellen Stoffen und ist daher für alle Organismen unentbehrlich. Im Blattgrün der Pflanzen, dem Chlorophyll, ist Magnesium zu etwa 2 % enthalten. Dort bildet es das Zentralatom des Chlorophylls. Bei Magnesiummangel vergeilen Pflanzen ebenso wie auch bei Lichtmangel. Auch dem menschlichen Körper muss Magnesium täglich in ausreichender Menge zugeführt werden, um Magnesiummangel vorzubeugen.
Der Körper eines Erwachsenen enthält etwa 20 g Magnesium (zum Vergleich: 1000 g Calcium). Im Blutplasma ist das Magnesium zu 40 % an Proteine gebunden; der normale Serumspiegel beträgt 0,8–1,1 mmol/l. Magnesium ist an circa 300 Enzymreaktionen als Enzymbestandteil oder Coenzym beteiligt. Zudem beeinflussen freie Mg-Ionen das Potential an den Zellmembranen und fungieren als second messenger im Immunsystem. Sie stabilisieren das Ruhepotential von erregbaren Muskel- und Nervenzellen und der Zellen des autonomen Nervensystems. Magnesiummangel löst Ruhelosigkeit, Nervosität, Reizbarkeit, Konzentrationsmangel, Müdigkeit, allgemeines Schwächegefühl, Kopfschmerzen, Herzrhythmusstörungen und Muskelkrämpfe aus. Es kann auch zum Herzinfarkt kommen.[18] Im Bereich Stoffwechsel und Psyche wird vermutet, dass Magnesiummangel Depression und schizophrene Psychosen verstärkt. Ein Magnesiumüberschuss im Blut kann durch exzessive Zufuhr und Nierenfunktionsstörungen auftreten und führt zu Störungen im Nervensystem und Herz.
Die Magnesiumresorption findet zuerst im oberen Dünndarm statt, aber auch im übrigen Verdauungstrakt.[19] Es wird über die Nieren ausgeschieden und ist in unterschiedlichen Mengen in allen Nahrungsmitteln sowie im Trinkwasser enthalten. Die erforderliche Tagesdosis von circa 300 mg wird in der Regel durch eine ausgewogene Ernährung erreicht. Ein erhöhter Bedarf kann über Nahrungsergänzungsmittel oder Medikamente gedeckt werden. Leichter Magnesiummangel ist durch schwere Erkrankung, Schwangerschaft oder Leistungssport möglich. Schwere Mangelzustände treten bei Nierenfunktionsstörungen, langandauerndem Durchfall, chronischen Darmentzündungen, schlecht eingestelltem Diabetes mellitus, Kortikoiden, bestimmten Diuretika oder Alkoholismus mit Fehlernährung auf.[20]
Magnesiumsalze wie etwa Citrat, Gluconat, Aspartat und Aspartathydrochlorid sind in Deutschland als Arzneimittel zugelassen, und zwar in Tages-Dosen von 100 bis 400 mg gegen Mangelzustände und neuromuskuläre Störungen wie beispielsweise Muskelkrämpfe, Migräne oder Schwangerschaftskomplikationen. Nebenwirkungen sind Magen-Darm-Beschwerden und Durchfall, bei Überdosierung auch Müdigkeit und Pulsverlangsamung. Kontraindikationen sind Nierenfunktionsstörung sowie bestimmte Herzrhythmusstörungen.
Bei oraler Aufnahme von Magnesiumpräparaten (Tabletten, Kau- oder Lutschtabletten, Granulat zum Auflösen in Flüssigkeit) ist zum einen die Dosierung wichtig. Verschiedene Studien kommen zu dem Ergebnis, dass bei einer Einnahme von 120 mg circa 35 % resorbiert werden, jedoch bei Einnahme einer kompletten Tagesdosis von 360 mg nur noch circa 18 %.[21] Für die Resorption im Körper ist die Form der heute in Medikamenten gebräuchlichen Verbindungen unerheblich, denn sie sind sowohl pharmakologisch als auch biologisch und klinisch äquivalent; organische Salze wie etwa Magnesiumaspartat oder Magnesiumcitrat werden dabei lediglich schneller vom Körper aufgenommen als anorganische Verbindungen.[19] Zum anderen verbleibt das zusätzliche Magnesium nur dann nutzbringend im Körper, wenn auch genug bindende Moleküle im Körper zur Verfügung stehen; dies geschieht durch biochemische Anpassungen erst nach längerer Erhöhung des Magnesiumangebotes bzw. Einnahme über wenigstens vier Wochen.[19]
Magnesiumsulfat („Bittersalz“) war früher als Abführmittel gebräuchlich.
Magnesiumsalze finden in der Alternativmedizin Verwendung.
Magnesium dient etwa 300 verschiedenen Proteinen als Cofaktor, vor allem bei ATP- und Nukleinsäure-bindenden Enzymen. Die empfohlene tägliche Zufuhr von Magnesium beträgt beim Menschen je nach Alter und Geschlecht zwischen 24 und 400 mg pro Tag.[22]
Magnesium kommt als Verbindung in vielen Lebensmitteln vor, insbesondere in Vollkornprodukten (zum Beispiel Vollkornbrot, Vollkorn-Nudeln, Vollkorn-Reis, Haferflocken, Cornflakes), Mineralwasser, insbesondere Heilwasser, Leitungswasser ausreichender Wasserhärte, Leber, Geflügel, Speisefisch, Kürbiskernen, Sonnenblumenkernen, Schokolade, Cashewnüssen, Erdnüssen, Kartoffeln, Spinat, Kohlrabi, Beerenobst, Orangen, Bananen, Sesam, Zuckerrübensirup, Milch und Milchprodukten.
Die Gefährlichkeit von elementarem Magnesium hängt stark von der Temperatur und der Teilchengröße ab: kompaktes Magnesium ist bei Temperaturen unterhalb des Schmelzpunktes ungefährlich, während Magnesiumspäne und -pulver leichtentzündlich sind. Bedingt durch die große Oberfläche können letztere leicht mit dem Sauerstoff der Luft reagieren. Bei sehr feinem Magnesiumpulver besteht die Gefahr der Selbstentzündung; Luft-Pulver-Gemische sind sogar explosionsgefährlich. Phlegmatisierung ist eine die Gefahr herabsetzende Behandlung bei der Verarbeitung von Magnesium-, wie Metallpulvern überhaupt. Geschmolzenes Magnesium entzündet sich ebenfalls von selbst an der Luft. Auch mit vielen anderen Stoffen, beispielsweise Wasser und anderen sauerstoffhaltigen Verbindungen, reagiert feinkörniges oder erhitztes Magnesium. Magnesiumschmelzen bedürfen daher einer permanenten Sicherung gegen Zutritt von Luftsauerstoff. In der Praxis erfolgt dies durch Abdeckung der Schmelze mittels magnesiumchloridreichen Mitteln. Schwefelhexafluorid ist ebenfalls als Oxidationsschutz geeignet. Das früher übliche Abdecken mit elementarem Schwefel wird wegen der starken Belästigung durch entstehendes Schwefeldioxid nicht mehr praktiziert.
Bei Magnesiumbränden treten Temperaturen bis zu etwa 3000 °C auf. Keinesfalls dürfen gängige Löschmittel wie Wasser, Kohlenstoffdioxid, Schaum oder Stickstoff verwendet werden, da Magnesium heftig mit diesen reagiert. Bei Zutritt von Wasser zu einem Magnesiumbrand besteht die akute Gefahr einer Knallgasreaktion.
Für den Brand (Metallbrände) einer Schmelze gilt das Löschprinzip des Erstickens, also die rasche Sauerstoffverdrängung. Im einfachsten Fall durch Abdecken mit trockenem Sand, sonst mittels Aufbringung eines Abdecksalzes für Magnesiumschmelzen. Weiter geeignet sind Löschpulver der Brandklasse D, Magnesiumoxid-Pulver (Magnesia usta/gebrannte Magnesia), notfalls auch trockene rostfreie Graugussspäne.
Bei der Verwendung von Magnesium sind insofern alle gegebenen Sicherheitshinweise genau zu befolgen. Es darf unter keinen Umständen eine explosive Atmosphäre (Magnesiumstaub, Wasserstoff, Aerosole und Dämpfe brennbarer Kühlschmierstoffe) entstehen. Auch die normalen Arbeitsschutzmaßnahmen, wie die Vermeidung von Zündquellen, müssen beachtet werden.
Der Nachweis von Magnesium gelingt am besten mittels Magneson II, Titangelb oder Chinalizarin.
Zum Nachweis mit Magneson II (4-(4-Nitrophenylazo)-1-naphthol) wird die Ursubstanz in Wasser gelöst und alkalisch gemacht. Danach gibt man einige Tropfen einer Lösung des Azofarbstoffs Magneson II hinzu. Bei Anwesenheit von Magnesium-Ionen entsteht ein dunkelblauer Farblack. Andere Erdalkalimetalle sollten vorher durch Fällung als Carbonate entfernt werden.
Zum Nachweis mit Titangelb (Thiazolgelb G) wird die Ursubstanz in Wasser gelöst und angesäuert. Anschließend wird sie mit einem Tropfen der Titangelb-Lösung versetzt und mit verdünnter Natronlauge alkalisch gemacht. Bei Anwesenheit von Magnesium entsteht ein hellroter Niederschlag. Nickel-, Zink-, Mangan- und Cobalt-Ionen stören diesen Nachweis und sollten vorher als Sulfide gefällt werden.
Zum Nachweis mit Chinalizarin wird die saure Probelösung mit zwei Tropfen der Farbstofflösung versetzt. Dann wird verdünnte Natronlauge bis zur basischen Reaktion zugegeben. Eine blaue Färbung oder Fällung zeigt Magnesium an.
Als Nachweisreaktion für Magnesiumsalze kann auch die Bildung von Niederschlägen mit Phosphatsalz-Lösungen herangezogen werden. Die schwermetallfreie, mit Ammoniak und Ammoniumchlorid auf pH 8 bis 9 gepufferte Probelösung wird dazu mit Dinatriumhydrogenphosphatlösung versetzt. Eine weiße, säurelösliche Trübung durch Magnesiumammoniumphosphat MgNH4PO4 zeigt Magnesiumionen an:
Aus ammoniakalischer Lösung kann Mg2+ auch mit Oxin als schwerlösliche gelbgrünliche Verbindung nachgewiesen werden. Dieser Nachweis eignet sich für den Kationentrennungsgang.
Magnesiumorganyle sind metallorganische Verbindungen, in denen eine Bindung zwischen Magnesium und Kohlenstoff existiert. Unter den Magnesiumorganylen kommt Grignardverbindungen (R-Mg-X) die weitaus größte Bedeutung zu. Eine deutlich untergeordnete Rolle spielen binäre Magnesiumorganyle sowie Alkenylmagnesiumhalogenide.
Organylmagnesiumhalogenide (meist Grignardverbindung genannt) werden im Direktverfahren durch die Reaktion von Organylhalogeniden mit Magnesiumspänen gewonnen.[23] Grignard-Verbindungen stehen in Lösung im Schlenk-Gleichgewicht. Grignardverbindungen reagieren unter Halogen-Organyl-Substitution zu Elementorganylen:[24]
Allgemein:
z. B. :
oder unter Addition von Organylen mit Mehrfachbindungssystemen:
Allgemein:
z. B.:
Binäre Magnesiumorganyle (R2Mg, auch Magnesium-diorganyle genannt) können auf verschiedene Art erzeugt werden:[25]
Alkine reagieren im Rahmen der sogenannten Carbomagnesierung mit Alkinen zu Alkenylmagnesiumhalogeniden:[30]
H | He | ||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og |
Alkalimetalle | Erdalkalimetalle | Lanthanoide | Actinoide | Übergangsmetalle | Metalle | Halbmetalle | Nichtmetalle | Halogene | Edelgase | Chemie unbekannt |
This article uses material from the Wikipedia article "Magnesium", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia
element,system,atom,molecule,metal,halogen,noble gas,chemical,chemistry