powered by CADENAS

Social Share

Stoßdämpfer (48953 views - Maschinenbau)

Der Stoßdämpfer ist bei Fahrwerken ein sicherheitsrelevantes Bauteil, das die Schwingungen der gefederten Massen schnell abklingen lässt. Durch Umwandlung der Schwingungsenergie in Wärme durch besondere Maßnahmen wird eine deutlich gedämpfte Schwingung erzeugt. Ohne diese Maßnahmen würde die Schwingung zu langsam abklingen. Korrekter wäre die Bezeichnung „Schwingungsdämpfer“, denn nicht der Stoß, sondern seine Wirkung ist zu beeinflussen. Das Nachgeben des Fahrzeugkörpers gegen von Fahrbahnunebenheiten an den Rädern erzeugte stoßförmige Bewegungen wird durch federnde Radaufhängungen bewirkt. Das Nachgeben soll aber nicht zu einem lange andauernden Schwingen führen.
Go to Article

Explanation by Hotspot Model

Stoßdämpfer

Stoßdämpfer

Der Stoßdämpfer ist bei Fahrwerken ein sicherheitsrelevantes Bauteil, das die Schwingungen der gefederten Massen schnell abklingen lässt. Durch Umwandlung der Schwingungsenergie in Wärme durch besondere Maßnahmen wird eine deutlich gedämpfte Schwingung erzeugt. Ohne diese Maßnahmen würde die Schwingung zu langsam abklingen.

Korrekter wäre die Bezeichnung „Schwingungsdämpfer“, denn nicht der Stoß, sondern seine Wirkung ist zu beeinflussen. Das Nachgeben des Fahrzeugkörpers gegen von Fahrbahnunebenheiten an den Rädern erzeugte stoßförmige Bewegungen wird durch federnde Radaufhängungen bewirkt. Das Nachgeben soll aber nicht zu einem lange andauernden Schwingen führen.

Bedeutung der Stoßdämpfer in Kraftfahrzeugen

Beim Schwingen der Räder variiert die Aufstandskraft des Fahrzeugs gegenüber der Fahrbahn. Wird diese Kraft zu klein, können die Räder rutschen oder abheben, was vor allem bei Kurvenfahrt und beim Bremsen die Beherrschbarkeit des Fahrzeugs mindert und zu Unfällen führen kann. Das Schwingen muss deshalb möglichst rasch abklingen. Da sich das für den Fahrkomfort erwünschte Schwingen und ein für die Fahrsicherheit erwünschter konstant hoher Bodenkontakt gegenseitig ausschließen, ist die konstruktive Abstimmung zwischen Federung und Stoßdämpfung stets ein Kompromiss, der durch nachträgliches Umrüsten mit Bausätzen aus dem Zubehörhandel verschlechtert werden kann.

Stoßdämpfer können in ihrer Wirkung nachlassen, weshalb ihre dauernde Beobachtung erforderlich ist. Diese ist bei der Hauptuntersuchung (zum Beispiel beim TÜV) z.Zt. noch nicht ausreichend. Anstatt einer Funktionsprüfung z.B. mit einem shock tester, wobei die Abklingkurve der Schwingung aufgezeichnet wird, erfolgt nur eine Sichtprüfung.

Erkennen von defekten Stoßdämpfern in Pkw

Nachlassende Dämpfung wird oft unbewusst durch ein geändertes Fahrverhalten des Fahrers ausgeglichen. Es gibt einige Anzeichen von nachlassenden Stoßdämpfern, wobei die auftretenden Effekte nicht schlagartig auftreten, sondern mit wachsendem Verschleiß des Dämpfers einhergehen:

  • Mehrfaches Nachschwingen, wenn man das Fahrzeug in Radnähe mit der Hand in Schwingungen versetzt (einfacher Funktionstest, das Verhalten zeigt sich vor allem bei Dämpfern, die völlig funktionslos geworden sind)
  • Nach Unebenheiten schwingt das Fahrzeug nach
  • Poltergeräusche auf schlechten Straßen bei niedriger Geschwindigkeit (30-Zone)
  • Ungleichmäßige Abnutzung von Reifen und erhöhter Reifenverschleiß
  • Flatternde Lenkung oder vielfach unterbrochene Bremsspur nach einer Vollbremsung wegen springender Räder
  • schwammiges Kurvenfahrverhalten, bei welliger Fahrbahn driftet das Fahrzeug in Abhängigkeit von der Anregung der Vertikalschwingungen nach außen
  • steigende Seitenwindempfindlichkeit

Gänzlich defekte Dämpfer erkennt man auch durch erhebliche Mengen austretenden Öls an den Kolbenstangen der Dämpfer. Umgekehrt kann aber aus einem vollkommen dichten Stoßdämpfer nicht die einwandfreie Funktion abgeleitet werden.

Physikalische Prinzipien der Dämpfung

Hydraulische Dämpfung

Konventionelle Stoßdämpfer in Pkw werden heutzutage hauptsächlich als hydraulische Teleskopstoßdämpfer in Ein- und Zweirohrbauweise gefertigt. Ihr Prinzip beruht auf der Tatsache, dass die Widerstandskraft gegen das Fließen verdrängter Flüssigkeit von der Fließgeschwindigkeit abhängt. Sie ist nicht linear, sondern progressiv, das heißt sie steigt mit der Fließgeschwindigkeit an.

Reibungsdämpfung

Vor der Entwicklung hydraulischer Stoßdämpfer wurden die Fahrzeuge mit mechanisch wirkenden Reibungsdämpfern ausgerüstet. Nachteilig ist, dass die Haftreibung bereits in Ruhe wirkt und sogar größer als die folgende, nahezu geschwindigkeitsunabhängige Gleitreibung ist. Die (größere) Losbrechkraft bewirkt ein Verhalten, das als federungsverhärtend bezeichnet wird. Sie tritt unter Umständen auch an den Umkehrpunkten der Schwingung auf.

Übliche Reibungsdämpfer bestehen aus mehreren aufeinander gestapelten und axial gegeneinander gedrückten Reibscheiben. Diese Scheiben bilden abwechselnd zwei Gruppen, von denen die eine fest mit dem Fahrgestell, die andere mittig drehbar mit dem Teil verbunden ist, dessen Schwingung zu dämpfen ist. Ein solcher Reibungsdämpfer funktioniert gleich wie eine Lamellenkupplung.

Bauformen von Stoßdämpfern in Pkw

Grundsätzlich unterscheidet man zwischen einem Achsdämpfer, das heißt einem allein eingebauten Schwingungsdämpfer, einer Feder-Dämpfer-Einheit („Federbein“), bei der Feder und Dämpfer zu einer Baugruppe vereint sind und dem MacPherson-Federbein, das zusätzlich zu beidem das Rad in Längs- und Querrichtung führt.

Hebelstoßdämpfer

Als Hebelstoßdämpfer werden die üblichen, in sich drehenden Reibungsstoßdämpfer bezeichnet. Eine i. d. R. zu dämpfende Linearbewegung erfordert die Zwischenschaltung eines um die Dämpfermitte drehenden Hebels.

Der Houdaille-Stoßdämpfer ist ein hydraulisch wirkender Stoßdämpfer mit Schwenkkolben in einem unterteilten zylindrischen Gehäuse, der ebenfalls über einen Hebel verdreht wird.

Als Hebelstoßdämpfer werden aber auch Konstruktionen genannt, in denen ein linear bewegter Dämpfer an einem an anderer Stelle des Fahrgestells drehenden Hebel wirkt. Solch ein Hebel ist i. d. R. ein Lenker in der Radaufhängung. Dazu zählt auch der ältere Kniehebelstoßdämpfer, in dem ein Hubkolben im Zylinder über einen Kniehebel von außen betätigt wird.

Stoßdämpfer mit linearer Bewegung (Teleskopstoßdämpfer)

Einrohrdämpfer (Gasdruckdäpfer)

Der Einrohrstoßdämpfer ist in die Arbeitskammer (Ölraum) und den Gegendruckraum (Gaskammer) untergliedert. Im Ölraum wird die eigentliche Dämpferarbeit vollbracht, das heißt die am Kolben sitzenden Dämpfungsventile setzen dem durch den Kolben hindurchfließenden Öl einen Widerstand entgegen. Dadurch wird eine Druckdifferenz erzeugt, die der sich relativ zum Behälter bewegenden Kolbenstange eine dämpfende Kraft entgegensetzt. Die Gaskammer gleicht Volumenänderungen beim Ein- und Ausfahren der Kolbenstangen und durch Temperaturschwankungen aus. Üblicherweise hat ein Einrohrdämpfer einen Basisinnendruck von ca. 20–30 bar. Diese Vorspannung wird benötigt, damit beim Einfedern nicht die Ölsäule in der oberen Arbeitskammer (Kammer über dem Kolben) abreißt und im Öl Gasblasen entstehen (Gefahr der Kavitation). Dies würde sich nachteilig auf die Kraftcharakteristik des Dämpfers auswirken. Durch den Gasdruck ist der Stoßdämpfer zusätzlich eine kleine Gasdruckfeder.

Zweirohrdämpfer

Der Zweirohrdämpfer hat zusätzlich zum Zylinderrohr, in dem sich der an der Kolbenstange befestigte und mit weiteren Ventilteilen bestückte Kolben axial bewegt, ein weiteres koaxial angeordnetes Behälterrohr. Der Kolben teilt den inneren Ölraum in einen oberen und unteren Arbeitsraum. In der Druckstufe fährt die Kolbenstange ein und es strömt ein Teil des Öls aus dem unteren Arbeitsraum durch das Kolbenventil in den oberen Arbeitsraum. Das der eintauchenden Kolbenstange entsprechende Ölvolumen wird dabei durch ein am unteren Ende des Zylinderrohres befindliches Bodenventil in den so genannten Ausgleichsraum zwischen Zylinder- und Behälterrohr gedrückt. Dabei wird ebenfalls durch das Bodenventil eine für die Dämpfung relevante Druckdifferenz erzeugt. Beim Ausfahren der Kolbenstange (Zugstufe) übernimmt das Kolbenventil die Dämpfung, während durch das Bodenventil das der ausfahrenden Kolbenstange entsprechende Ölvolumen weitgehend ungehindert zurückfließt.

Aufbau und Funktion eines hydraulischen Teleskopstoßdämpfers

Stoßdämpfer-Bewegungsmodell

Im Bewegungsmodell des (Zweirohr-)Stoßdämpfers wird gezeigt, wie sich mit der Ein- und Auswärtsbewegung der Kolbenstange der Ölspiegel im Stoßdämpfer hebt und senkt. Die Bewegung des Ölspiegels ist aber stark übertrieben dargestellt. Der Hub des Ölspiegels ist größer als der Hub der Kolbenstange. Das entspricht weder den Abmessungen des Modells noch den Verhältnissen in einem wirklichen Pkw-Dämpfer. Für die Bewegung des Ölspiegels gilt, dass das Volumen der einfahrenden Kolbenstange gleich dem Volumen des Ölanstiegs in der Ringfläche zwischen den Rohren ist, also:

oder

mit

= Querschnittsfläche der Kolbenstange
= Ringfläche zwischen dem Außen- und dem Innenrohr
= Durchmesser der Kolbenstange
= Innendurchmesser des äußeren Rohres (Behälterrohr)
= Außendurchmesser des inneren Rohres (Zylinderrohr)
= Hub der Kolbenstange
= Hub des Ölspiegels

Mit wirklichen Dämpferabmessungen (d= 11: Da = 36; Di = 29,4) ergibt sich

Der Hub des Ölspiegels macht also nur das 0,28-fache des Kolbenstangenhubs aus. Diesen realistischen Wert sollte auch das Bewegungsmodell zeigen. Dies kann einfach durch Änderung des Ölspiegelhubs geschehen. Am besten natürlich mit zusätzlichen Anpassungen der Maße d, Da und Di im Bewegungsmodell, damit Berechnung und Erscheinungsbild exakt übereinstimmen.

Ölstoßdämpfer mit Ausgleichsvolumen (Zweirohrdämpfer)

Hydraulische Stoßdämpfer bestehen im Wesentlichen aus einem ölbefüllten Zylinder und einer darin geführten Kolbenstange. Bei axialer Bewegung der Kolbenstange (und damit des Kolbens) gegenüber dem Zylinder muss das Öl durch enge Kanäle und Ventile im Kolben strömen. Durch den Widerstand, der dem Öl dabei entgegengebracht wird, werden Druckdifferenzen erzeugt, die über Wirkflächen die Dämpfungskräfte erzeugen. Die daraus resultierende Dämpfarbeit wird in Erwärmung des Öls umgesetzt. Die Viskosität und damit Dämpfungswirkung des Öls ist auch temperaturabhängig. Um den Temperaturanstieg des Dämpfers auf ein für die beteiligten Bauteile erträgliches Niveau zu begrenzen, muss der Dämpfer ausreichend Wärme an die Umgebungsluft abgeben können.

Das Volumen der einsinkenden Kolbenstange muss innerhalb des Dämpfers ausgeglichen werden. Einen reinen Öldämpfer kann es also nicht geben, denn Öl ist wie alle Flüssigkeiten nahezu inkompressibel. Der Ausgleich kann etwa durch ein unter hohem Druck (~30 bar) stehendes Gaspolster aus Stickstoff oder Luft realisiert werden, das durch einen beweglichen Kolben vom Ölvolumen getrennt angeordnet ist (Einrohrdämpfer). Durch Verschiebung des trennenden Kolbens übernimmt das Gaspolster den Volumenausgleich beim Einfahren der Kolbenstange. Das Gas wirkt wie eine zusätzliche Feder, sodass die Wirkung der Federung unterstützt wird.

Zug- und Druckstufe

Ein direkt angelenkter hydraulischer Stoßdämpfer wird beim Ausfedern auf Zug und beim Einfedern auf Druck beansprucht. Deshalb wird die Dämpfung beim Ausfedern als Zugstufe, beim Einfedern als Druckstufe bezeichnet.

Um das „Anfedern“ beim Auffahren auf rampenförmige Einzelhindernisse zu verbessern, wird die Zugstufe meist härter als die Druckstufe ausgeführt.[1] Ein weiterer Grund für diese Auslegung ist ein harmonischer Aufbau des Wankwinkels bei schnellen Ausweichmanövern.

Weitere Formen[Bearbeiten | Quelltext bearbeiten]

Eine besondere in der Formel 1 eingesetzte Bauart ist der außen anliegende Drehstoßdämpfer. Eine Neuentwicklung sind die Luftfederdämpfer[2], die sowohl im Nutzfahrzeugbereich wie auch bei Personenwagen eingebaut werden. Sie können neben der Federung und Dämpfung auch die Niveauregulierung übernehmen. Auch Motorräder und Fahrräder werden mit Luftfederdämpfern ausgestattet, in denen das Medium Luft sowohl Feder- als auch Dämpferaufgaben übernimmt. Erforscht wird die Entwicklung eines elektromechanischen Dämpfersystems für Straßenfahrzeuge. Der Vorteil hier ist, dass statt Wärme primär elektrische Energie erzeugt wird, die im Fahrzeug direkt genutzt werden kann.

Siehe auch[Bearbeiten | Quelltext bearbeiten]



This article uses material from the Wikipedia article "Stoßdämpfer", which is released under the Creative Commons Attribution-Share-Alike License 3.0. There is a list of all authors in Wikipedia

Example Part

Maschinenbau

AutoCAD, SolidWorks, Autodesk Inventor, FreeCAD, Catia, Siemens NX, PTC Creo, Siemens Solid Edge, Microstation, TurboCAD, Draftsight, IronCAD, Spaceclaim, VariCAD, OnShape, IntelliCAD,T-FLEX, VariCAD, TenadoCAD, ProgeCAD, Cadra, ME10, Medusa, Designspark, KeyCreator, Caddy, GstarCAD, Varimetrix, ASCON Kompas-3D, Free Download, Autocad, 2D Library, DXF, DWG, 2D drawing, 3D digital library, STEP, IGES, 3D CAD Models, 3D files, CAD library, 3D CAD files, BeckerCAD, MegaCAD, Topsolid Missler, Vero VisiCAD, Acis SAT, Cimatron, Cadceus, Solidthinking, Unigraphics, Cadkey, ZWCAD, Alibre, Cocreate, MasterCAM, QCAD.org, QCAD, NanoCAD